本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数-8({x}^{3})cos({x}^{2}) - 12xsin({x}^{2}) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = -8x^{3}cos(x^{2}) - 12xsin(x^{2})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( -8x^{3}cos(x^{2}) - 12xsin(x^{2})\right)}{dx}\\=&-8*3x^{2}cos(x^{2}) - 8x^{3}*-sin(x^{2})*2x - 12sin(x^{2}) - 12xcos(x^{2})*2x\\=&-48x^{2}cos(x^{2}) + 16x^{4}sin(x^{2}) - 12sin(x^{2})\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( -48x^{2}cos(x^{2}) + 16x^{4}sin(x^{2}) - 12sin(x^{2})\right)}{dx}\\=&-48*2xcos(x^{2}) - 48x^{2}*-sin(x^{2})*2x + 16*4x^{3}sin(x^{2}) + 16x^{4}cos(x^{2})*2x - 12cos(x^{2})*2x\\=&-120xcos(x^{2}) + 160x^{3}sin(x^{2}) + 32x^{5}cos(x^{2})\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( -120xcos(x^{2}) + 160x^{3}sin(x^{2}) + 32x^{5}cos(x^{2})\right)}{dx}\\=&-120cos(x^{2}) - 120x*-sin(x^{2})*2x + 160*3x^{2}sin(x^{2}) + 160x^{3}cos(x^{2})*2x + 32*5x^{4}cos(x^{2}) + 32x^{5}*-sin(x^{2})*2x\\=&-120cos(x^{2}) + 720x^{2}sin(x^{2}) + 480x^{4}cos(x^{2}) - 64x^{6}sin(x^{2})\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( -120cos(x^{2}) + 720x^{2}sin(x^{2}) + 480x^{4}cos(x^{2}) - 64x^{6}sin(x^{2})\right)}{dx}\\=&-120*-sin(x^{2})*2x + 720*2xsin(x^{2}) + 720x^{2}cos(x^{2})*2x + 480*4x^{3}cos(x^{2}) + 480x^{4}*-sin(x^{2})*2x - 64*6x^{5}sin(x^{2}) - 64x^{6}cos(x^{2})*2x\\=&1680xsin(x^{2}) + 3360x^{3}cos(x^{2}) - 1344x^{5}sin(x^{2}) - 128x^{7}cos(x^{2})\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!