本次共计算 1 个题目:每一题对 x 求 5 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数log_{log_{2}^{x}}^{x} 关于 x 的 5 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ \\ &\color{blue}{函数的 5 阶导数:} \\=&\frac{24}{x^{5}ln(log_{2}^{x})} + \frac{50}{x^{5}log(2, x)ln(2)ln^{2}(log_{2}^{x})} + \frac{70}{x^{5}{\left(log(2, x)^{2}ln^{2}(2)ln^{2}(log_{2}^{x})} + \frac{140}{x^{5}{\left(log(2, x)^{2}ln^{2}(2)ln^{3}(log_{2}^{x})} + \frac{60}{x^{5}{\left(log(2, x)^{3}ln^{3}(2)ln^{2}(log_{2}^{x})} + \frac{180}{x^{5}{\left(log(2, x)^{3}ln^{3}(2)ln^{3}(log_{2}^{x})} + \frac{180}{x^{5}{\left(log(2, x)^{3}ln^{3}(2)ln^{4}(log_{2}^{x})} + \frac{24}{x^{5}{\left(log(2, x)^{4}ln^{4}(2)ln^{2}(log_{2}^{x})} + \frac{88}{x^{5}{\left(log(2, x)^{4}ln^{4}(2)ln^{3}(log_{2}^{x})} + \frac{144}{x^{5}{\left(log(2, x)^{4}ln^{4}(2)ln^{4}(log_{2}^{x})} + \frac{96}{x^{5}{\left(log(2, x)^{4}ln^{4}(2)ln^{5}(log_{2}^{x})} - \frac{24log_{log_{2}^{x}}^{x}}{x^{5}log(2, x)ln(2)ln(log_{2}^{x})} - \frac{50log_{log_{2}^{x}}^{x}}{x^{5}{\left(log(2, x)^{2}ln^{2}(2)ln(log_{2}^{x})} + \frac{50}{x^{5}log(2, x)ln^{2}(log_{2}^{x})ln(2)} - \frac{50log_{log_{2}^{x}}^{x}}{x^{5}{\left(log(2, x)^{2}ln^{2}(2)ln^{2}(log_{2}^{x})} - \frac{50log_{log_{2}^{x}}^{x}}{x^{5}{\left(log(2, x)^{2}ln^{2}(2)ln^{2}(log_{2}^{x})} - \frac{70log_{log_{2}^{x}}^{x}}{x^{5}{\left(log(2, x)^{3}ln^{3}(2)ln(log_{2}^{x})} + \frac{35}{x^{5}{\left(log(2, x)^{2}ln^{2}(log_{2}^{x})ln^{2}(2)} - \frac{35log_{log_{2}^{x}}^{x}}{x^{5}{\left(log(2, x)^{3}ln^{3}(2)ln^{2}(log_{2}^{x})} - \frac{175log_{log_{2}^{x}}^{x}}{x^{5}{\left(log(2, x)^{3}ln^{3}(2)ln^{2}(log_{2}^{x})} + \frac{70}{x^{5}{\left(log(2, x)^{2}ln^{3}(log_{2}^{x})ln^{2}(2)} - \frac{70log_{log_{2}^{x}}^{x}}{x^{5}{\left(log(2, x)^{3}ln^{3}(2)ln^{3}(log_{2}^{x})} - \frac{140log_{log_{2}^{x}}^{x}}{x^{5}{\left(log(2, x)^{3}ln^{3}(2)ln^{3}(log_{2}^{x})} - \frac{60log_{log_{2}^{x}}^{x}}{x^{5}{\left(log(2, x)^{4}ln^{4}(2)ln(log_{2}^{x})} + \frac{20}{x^{5}{\left(log(2, x)^{3}ln^{2}(log_{2}^{x})ln^{3}(2)} - \frac{20log_{log_{2}^{x}}^{x}}{x^{5}{\left(log(2, x)^{4}ln^{4}(2)ln^{2}(log_{2}^{x})} - \frac{200log_{log_{2}^{x}}^{x}}{x^{5}{\left(log(2, x)^{4}ln^{4}(2)ln^{2}(log_{2}^{x})} + \frac{60}{x^{5}{\left(log(2, x)^{3}ln^{3}(log_{2}^{x})ln^{3}(2)} - \frac{60log_{log_{2}^{x}}^{x}}{x^{5}{\left(log(2, x)^{4}ln^{4}(2)ln^{3}(log_{2}^{x})} - \frac{300log_{log_{2}^{x}}^{x}}{x^{5}{\left(log(2, x)^{4}ln^{4}(2)ln^{3}(log_{2}^{x})} + \frac{60}{x^{5}{\left(log(2, x)^{3}ln^{4}(log_{2}^{x})ln^{3}(2)} - \frac{60log_{log_{2}^{x}}^{x}}{x^{5}{\left(log(2, x)^{4}ln^{4}(2)ln^{4}(log_{2}^{x})} - \frac{180log_{log_{2}^{x}}^{x}}{x^{5}{\left(log(2, x)^{4}ln^{4}(2)ln^{4}(log_{2}^{x})} - \frac{24log_{log_{2}^{x}}^{x}}{x^{5}{\left(log(2, x)^{5}ln^{5}(2)ln(log_{2}^{x})} + \frac{6}{x^{5}{\left(log(2, x)^{4}ln^{2}(log_{2}^{x})ln^{4}(2)} - \frac{6log_{log_{2}^{x}}^{x}}{x^{5}{\left(log(2, x)^{5}ln^{5}(2)ln^{2}(log_{2}^{x})} - \frac{94log_{log_{2}^{x}}^{x}}{x^{5}{\left(log(2, x)^{5}ln^{5}(2)ln^{2}(log_{2}^{x})} + \frac{22}{x^{5}{\left(log(2, x)^{4}ln^{3}(log_{2}^{x})ln^{4}(2)} - \frac{22log_{log_{2}^{x}}^{x}}{x^{5}{\left(log(2, x)^{5}ln^{5}(2)ln^{3}(log_{2}^{x})} - \frac{188log_{log_{2}^{x}}^{x}}{x^{5}{\left(log(2, x)^{5}ln^{5}(2)ln^{3}(log_{2}^{x})} + \frac{36}{x^{5}{\left(log(2, x)^{4}ln^{4}(log_{2}^{x})ln^{4}(2)} - \frac{36log_{log_{2}^{x}}^{x}}{x^{5}{\left(log(2, x)^{5}ln^{5}(2)ln^{4}(log_{2}^{x})} - \frac{204log_{log_{2}^{x}}^{x}}{x^{5}{\left(log(2, x)^{5}ln^{5}(2)ln^{4}(log_{2}^{x})} + \frac{24}{x^{5}{\left(log(2, x)^{4}ln^{5}(log_{2}^{x})ln^{4}(2)} - \frac{24log_{log_{2}^{x}}^{x}}{x^{5}{\left(log(2, x)^{5}ln^{5}(2)ln^{5}(log_{2}^{x})} - \frac{96log_{log_{2}^{x}}^{x}}{x^{5}{\left(log(2, x)^{5}ln^{5}(2)ln^{5}(log_{2}^{x})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!