本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数log_{log_{2}^{x}}^{log_{x}^{2}} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( log_{log_{2}^{x}}^{log_{x}^{2}}\right)}{dx}\\=&(\frac{(\frac{((\frac{(\frac{(0)}{(2)} - \frac{(1)log_{x}^{2}}{(x)})}{(ln(x))}))}{(log_{x}^{2})} - \frac{((\frac{(\frac{(1)}{(x)} - \frac{(0)log_{2}^{x}}{(2)})}{(ln(2))}))log_{log_{2}^{x}}^{log_{x}^{2}}}{(log_{2}^{x})})}{(ln(log_{2}^{x}))})\\=&\frac{-1}{xln(x)ln(log_{2}^{x})} - \frac{log_{log_{2}^{x}}^{log_{x}^{2}}}{xlog(2, x)ln(2)ln(log_{2}^{x})}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-1}{xln(x)ln(log_{2}^{x})} - \frac{log_{log_{2}^{x}}^{log_{x}^{2}}}{xlog(2, x)ln(2)ln(log_{2}^{x})}\right)}{dx}\\=&\frac{--1}{x^{2}ln(x)ln(log_{2}^{x})} - \frac{-1}{xln^{2}(x)(x)ln(log_{2}^{x})} - \frac{-(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{2}^{x}}{(2)})}{(ln(2))})}{xln(x)ln^{2}(log_{2}^{x})(log_{2}^{x})} - \frac{-log_{log_{2}^{x}}^{log_{x}^{2}}}{x^{2}log(2, x)ln(2)ln(log_{2}^{x})} - \frac{(\frac{-(\frac{(1)}{(x)} - \frac{(0)log_{2}^{x}}{(2)})}{{\left(log(2, x)^{2}(ln(2))})log_{log_{2}^{x}}^{log_{x}^{2}}}{xln(2)ln(log_{2}^{x})} - \frac{(\frac{(\frac{((\frac{(\frac{(0)}{(2)} - \frac{(1)log_{x}^{2}}{(x)})}{(ln(x))}))}{(log_{x}^{2})} - \frac{((\frac{(\frac{(1)}{(x)} - \frac{(0)log_{2}^{x}}{(2)})}{(ln(2))}))log_{log_{2}^{x}}^{log_{x}^{2}}}{(log_{2}^{x})})}{(ln(log_{2}^{x}))})}{xlog(2, x)ln(2)ln(log_{2}^{x})} - \frac{log_{log_{2}^{x}}^{log_{x}^{2}}*-0}{xlog(2, x)ln^{2}(2)(2)ln(log_{2}^{x})} - \frac{log_{log_{2}^{x}}^{log_{x}^{2}}*-(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{2}^{x}}{(2)})}{(ln(2))})}{xlog(2, x)ln(2)ln^{2}(log_{2}^{x})(log_{2}^{x})}\\=&\frac{1}{x^{2}ln(x)ln(log_{2}^{x})} + \frac{1}{x^{2}ln^{2}(x)ln(log_{2}^{x})} + \frac{1}{x^{2}log(2, x)ln(x)ln(2)ln^{2}(log_{2}^{x})} + \frac{log_{log_{2}^{x}}^{log_{x}^{2}}}{x^{2}log(2, x)ln(2)ln(log_{2}^{x})} + \frac{log_{log_{2}^{x}}^{log_{x}^{2}}}{x^{2}{\left(log(2, x)^{2}ln^{2}(2)ln(log_{2}^{x})} + \frac{1}{x^{2}log(2, x)ln(x)ln^{2}(log_{2}^{x})ln(2)} + \frac{log_{log_{2}^{x}}^{log_{x}^{2}}}{x^{2}{\left(log(2, x)^{2}ln^{2}(2)ln^{2}(log_{2}^{x})} + \frac{log_{log_{2}^{x}}^{log_{x}^{2}}}{x^{2}{\left(log(2, x)^{2}ln^{2}(2)ln^{2}(log_{2}^{x})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!