本次共计算 1 个题目:每一题对 x 求 5 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数({x}^{2} + \frac{1}{x} - \frac{36{x}^{1}}{3})sin({x}^{3}) - tan({x}^{2} + 1) 关于 x 的 5 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = x^{2}sin(x^{3}) + \frac{sin(x^{3})}{x} - 12xsin(x^{3}) - tan(x^{2} + 1)\\\\ &\color{blue}{函数的 5 阶导数:} \\=&120cos(x^{3}) - 3240x^{3}sin(x^{3}) - 5940x^{6}cos(x^{3}) + 2430x^{9}sin(x^{3}) + 243x^{12}cos(x^{3}) - \frac{120sin(x^{3})}{x^{6}} + \frac{120cos(x^{3})}{x^{3}} - 1080x^{3}cos(x^{3}) + 1215x^{6}sin(x^{3}) + 243x^{9}cos(x^{3}) + 15120x^{2}sin(x^{3}) + 45360x^{5}cos(x^{3}) - 24300x^{8}sin(x^{3}) - 2916x^{11}cos(x^{3}) - 240xsec^{4}(x^{2} + 1) - 480xtan^{2}(x^{2} + 1)sec^{2}(x^{2} + 1) - 2560x^{3}tan(x^{2} + 1)sec^{4}(x^{2} + 1) - 2816x^{5}tan^{2}(x^{2} + 1)sec^{4}(x^{2} + 1) - 1280x^{3}tan^{3}(x^{2} + 1)sec^{2}(x^{2} + 1) - 512x^{5}sec^{6}(x^{2} + 1) - 512x^{5}tan^{4}(x^{2} + 1)sec^{2}(x^{2} + 1)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!