本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sin(x){cos(x)}^{2} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sin(x)cos^{2}(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sin(x)cos^{2}(x)\right)}{dx}\\=&cos(x)cos^{2}(x) + sin(x)*-2cos(x)sin(x)\\=&cos^{3}(x) - 2sin^{2}(x)cos(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( cos^{3}(x) - 2sin^{2}(x)cos(x)\right)}{dx}\\=&-3cos^{2}(x)sin(x) - 2*2sin(x)cos(x)cos(x) - 2sin^{2}(x)*-sin(x)\\=& - 7sin(x)cos^{2}(x) + 2sin^{3}(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( - 7sin(x)cos^{2}(x) + 2sin^{3}(x)\right)}{dx}\\=& - 7cos(x)cos^{2}(x) - 7sin(x)*-2cos(x)sin(x) + 2*3sin^{2}(x)cos(x)\\=& - 7cos^{3}(x) + 20sin^{2}(x)cos(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( - 7cos^{3}(x) + 20sin^{2}(x)cos(x)\right)}{dx}\\=& - 7*-3cos^{2}(x)sin(x) + 20*2sin(x)cos(x)cos(x) + 20sin^{2}(x)*-sin(x)\\=&61sin(x)cos^{2}(x) - 20sin^{3}(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!