本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(xx + 2yz)(yy + 2zx)(zz + 2xy) - (xx + yy)(yy + zz)(zz + xx) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 2y^{3}x^{3} + 2z^{3}x^{3} + 4yzx^{4} + 4y^{4}zx + 4yz^{4}x + 7y^{2}z^{2}x^{2} + 2y^{3}z^{3} - y^{2}x^{4} - z^{4}x^{2} - z^{2}x^{4} - y^{4}z^{2} - y^{4}x^{2} - y^{2}z^{4}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 2y^{3}x^{3} + 2z^{3}x^{3} + 4yzx^{4} + 4y^{4}zx + 4yz^{4}x + 7y^{2}z^{2}x^{2} + 2y^{3}z^{3} - y^{2}x^{4} - z^{4}x^{2} - z^{2}x^{4} - y^{4}z^{2} - y^{4}x^{2} - y^{2}z^{4}\right)}{dx}\\=&2y^{3}*3x^{2} + 2z^{3}*3x^{2} + 4yz*4x^{3} + 4y^{4}z + 4yz^{4} + 7y^{2}z^{2}*2x + 0 - y^{2}*4x^{3} - z^{4}*2x - z^{2}*4x^{3} + 0 - y^{4}*2x + 0\\=&6y^{3}x^{2} + 6z^{3}x^{2} + 16yzx^{3} + 14y^{2}z^{2}x + 4yz^{4} + 4y^{4}z - 4y^{2}x^{3} - 2z^{4}x - 4z^{2}x^{3} - 2y^{4}x\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!