本次共计算 1 个题目:每一题对 x 求 15 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{x}^{n}ln(x) 关于 x 的 15 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ \\ &\color{blue}{函数的 15 阶导数:} \\=&\frac{87178291200n{x}^{n}ln(x)}{x^{15}} - \frac{283465647360n^{2}{x}^{n}ln(x)}{x^{15}} + \frac{392156797824n^{3}{x}^{n}ln(x)}{x^{15}} - \frac{310989260400n^{4}{x}^{n}ln(x)}{x^{15}} + \frac{159721605680n^{5}{x}^{n}ln(x)}{x^{15}} - \frac{56663366760n^{6}{x}^{n}ln(x)}{x^{15}} + \frac{14409322928n^{7}{x}^{n}ln(x)}{x^{15}} - \frac{2681453775n^{8}{x}^{n}ln(x)}{x^{15}} + \frac{368411615n^{9}{x}^{n}ln(x)}{x^{15}} - \frac{37312275n^{10}{x}^{n}ln(x)}{x^{15}} + \frac{2749747n^{11}{x}^{n}ln(x)}{x^{15}} - \frac{143325n^{12}{x}^{n}ln(x)}{x^{15}} + \frac{5005n^{13}{x}^{n}ln(x)}{x^{15}} - \frac{105n^{14}{x}^{n}ln(x)}{x^{15}} + \frac{n^{15}{x}^{n}ln(x)}{x^{15}} + \frac{3315704535n^{8}{x}^{n}}{x^{15}} - \frac{566931294720n{x}^{n}}{x^{15}} - \frac{373122750n^{9}{x}^{n}}{x^{15}} - \frac{339980200560n^{5}{x}^{n}}{x^{15}} + \frac{30247217n^{10}{x}^{n}}{x^{15}} - \frac{1243957041600n^{3}{x}^{n}}{x^{15}} - \frac{1719900n^{11}{x}^{n}}{x^{15}} + \frac{100865260496n^{6}{x}^{n}}{x^{15}} + \frac{65065n^{12}{x}^{n}}{x^{15}} + \frac{1176470393472n^{2}{x}^{n}}{x^{15}} - \frac{1470n^{13}{x}^{n}}{x^{15}} - \frac{21451630200n^{7}{x}^{n}}{x^{15}} + \frac{798608028400n^{4}{x}^{n}}{x^{15}} + \frac{15n^{14}{x}^{n}}{x^{15}} + \frac{87178291200{x}^{n}}{x^{15}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!