本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(arcsin(x) + sqrt(1 - x)sqrt(x + 1)(2{x}^{3} - x))}{8} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{1}{8}arcsin(x) + \frac{1}{4}x^{3}sqrt(x + 1)sqrt(-x + 1) - \frac{1}{8}xsqrt(-x + 1)sqrt(x + 1)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1}{8}arcsin(x) + \frac{1}{4}x^{3}sqrt(x + 1)sqrt(-x + 1) - \frac{1}{8}xsqrt(-x + 1)sqrt(x + 1)\right)}{dx}\\=&\frac{1}{8}(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})}) + \frac{1}{4}*3x^{2}sqrt(x + 1)sqrt(-x + 1) + \frac{\frac{1}{4}x^{3}(1 + 0)*\frac{1}{2}sqrt(-x + 1)}{(x + 1)^{\frac{1}{2}}} + \frac{\frac{1}{4}x^{3}sqrt(x + 1)(-1 + 0)*\frac{1}{2}}{(-x + 1)^{\frac{1}{2}}} - \frac{1}{8}sqrt(-x + 1)sqrt(x + 1) - \frac{\frac{1}{8}x(-1 + 0)*\frac{1}{2}sqrt(x + 1)}{(-x + 1)^{\frac{1}{2}}} - \frac{\frac{1}{8}xsqrt(-x + 1)(1 + 0)*\frac{1}{2}}{(x + 1)^{\frac{1}{2}}}\\=&\frac{x^{3}sqrt(-x + 1)}{8(x + 1)^{\frac{1}{2}}} + \frac{3x^{2}sqrt(x + 1)sqrt(-x + 1)}{4} - \frac{x^{3}sqrt(x + 1)}{8(-x + 1)^{\frac{1}{2}}} + \frac{xsqrt(x + 1)}{16(-x + 1)^{\frac{1}{2}}} - \frac{sqrt(-x + 1)sqrt(x + 1)}{8} - \frac{xsqrt(-x + 1)}{16(x + 1)^{\frac{1}{2}}} + \frac{1}{8(-x^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!