本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(\frac{(x - 1)(x - 2)}{(x - 3)(x - 4)})}^{\frac{1}{2}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = (\frac{x^{2}}{(x - 3)(x - 4)} - \frac{3x}{(x - 3)(x - 4)} + \frac{2}{(x - 3)(x - 4)})^{\frac{1}{2}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (\frac{x^{2}}{(x - 3)(x - 4)} - \frac{3x}{(x - 3)(x - 4)} + \frac{2}{(x - 3)(x - 4)})^{\frac{1}{2}}\right)}{dx}\\=&(\frac{\frac{1}{2}(\frac{(\frac{-(1 + 0)}{(x - 3)^{2}})x^{2}}{(x - 4)} + \frac{(\frac{-(1 + 0)}{(x - 4)^{2}})x^{2}}{(x - 3)} + \frac{2x}{(x - 3)(x - 4)} - \frac{3(\frac{-(1 + 0)}{(x - 3)^{2}})x}{(x - 4)} - \frac{3(\frac{-(1 + 0)}{(x - 4)^{2}})x}{(x - 3)} - \frac{3}{(x - 3)(x - 4)} + \frac{2(\frac{-(1 + 0)}{(x - 3)^{2}})}{(x - 4)} + \frac{2(\frac{-(1 + 0)}{(x - 4)^{2}})}{(x - 3)})}{(\frac{x^{2}}{(x - 3)(x - 4)} - \frac{3x}{(x - 3)(x - 4)} + \frac{2}{(x - 3)(x - 4)})^{\frac{1}{2}}})\\=&\frac{-x^{2}}{2(\frac{x^{2}}{(x - 3)(x - 4)} - \frac{3x}{(x - 3)(x - 4)} + \frac{2}{(x - 3)(x - 4)})^{\frac{1}{2}}(x - 3)^{2}(x - 4)} - \frac{x^{2}}{2(\frac{x^{2}}{(x - 3)(x - 4)} - \frac{3x}{(x - 3)(x - 4)} + \frac{2}{(x - 3)(x - 4)})^{\frac{1}{2}}(x - 4)^{2}(x - 3)} + \frac{x}{(\frac{x^{2}}{(x - 3)(x - 4)} - \frac{3x}{(x - 3)(x - 4)} + \frac{2}{(x - 3)(x - 4)})^{\frac{1}{2}}(x - 4)(x - 3)} + \frac{3x}{2(\frac{x^{2}}{(x - 3)(x - 4)} - \frac{3x}{(x - 3)(x - 4)} + \frac{2}{(x - 3)(x - 4)})^{\frac{1}{2}}(x - 3)^{2}(x - 4)} + \frac{3x}{2(\frac{x^{2}}{(x - 3)(x - 4)} - \frac{3x}{(x - 3)(x - 4)} + \frac{2}{(x - 3)(x - 4)})^{\frac{1}{2}}(x - 4)^{2}(x - 3)} - \frac{1}{(\frac{x^{2}}{(x - 3)(x - 4)} - \frac{3x}{(x - 3)(x - 4)} + \frac{2}{(x - 3)(x - 4)})^{\frac{1}{2}}(x - 3)^{2}(x - 4)} - \frac{1}{(\frac{x^{2}}{(x - 3)(x - 4)} - \frac{3x}{(x - 3)(x - 4)} + \frac{2}{(x - 3)(x - 4)})^{\frac{1}{2}}(x - 4)^{2}(x - 3)} - \frac{3}{2(\frac{x^{2}}{(x - 3)(x - 4)} - \frac{3x}{(x - 3)(x - 4)} + \frac{2}{(x - 3)(x - 4)})^{\frac{1}{2}}(x - 3)(x - 4)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!