本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(\frac{(x - 1)(x - 2)(x - 4)}{(x - 3)})}^{\frac{1}{2}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = (\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})^{\frac{1}{2}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})^{\frac{1}{2}}\right)}{dx}\\=&(\frac{\frac{1}{2}((\frac{-(1 + 0)}{(x - 3)^{2}})x^{3} + \frac{3x^{2}}{(x - 3)} - 7(\frac{-(1 + 0)}{(x - 3)^{2}})x^{2} - \frac{7*2x}{(x - 3)} + 14(\frac{-(1 + 0)}{(x - 3)^{2}})x + \frac{14}{(x - 3)} - 8(\frac{-(1 + 0)}{(x - 3)^{2}}))}{(\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})^{\frac{1}{2}}})\\=&\frac{-x^{3}}{2(\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})^{\frac{1}{2}}(x - 3)^{2}} + \frac{3x^{2}}{2(\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})^{\frac{1}{2}}(x - 3)} + \frac{7x^{2}}{2(\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})^{\frac{1}{2}}(x - 3)^{2}} - \frac{7x}{(\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})^{\frac{1}{2}}(x - 3)} - \frac{7x}{(\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})^{\frac{1}{2}}(x - 3)^{2}} + \frac{4}{(\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})^{\frac{1}{2}}(x - 3)^{2}} + \frac{7}{(\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})^{\frac{1}{2}}(x - 3)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!