本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(\frac{-1}{4})(ln(sin(x) - 1) - ln(sin(x) + 1)) + \frac{(sin(x) - 1)}{(4(1 + sin(x)))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{-1}{4}ln(sin(x) - 1) + \frac{1}{4}ln(sin(x) + 1) + \frac{sin(x)}{(4sin(x) + 4)} - \frac{1}{(4sin(x) + 4)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{-1}{4}ln(sin(x) - 1) + \frac{1}{4}ln(sin(x) + 1) + \frac{sin(x)}{(4sin(x) + 4)} - \frac{1}{(4sin(x) + 4)}\right)}{dx}\\=&\frac{\frac{-1}{4}(cos(x) + 0)}{(sin(x) - 1)} + \frac{\frac{1}{4}(cos(x) + 0)}{(sin(x) + 1)} + (\frac{-(4cos(x) + 0)}{(4sin(x) + 4)^{2}})sin(x) + \frac{cos(x)}{(4sin(x) + 4)} - (\frac{-(4cos(x) + 0)}{(4sin(x) + 4)^{2}})\\=&\frac{-cos(x)}{4(sin(x) - 1)} + \frac{cos(x)}{4(sin(x) + 1)} - \frac{4sin(x)cos(x)}{(4sin(x) + 4)^{2}} + \frac{cos(x)}{(4sin(x) + 4)} + \frac{4cos(x)}{(4sin(x) + 4)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!