本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{-(ln(1 - sin(x)) + ln(sin(x) + 1))}{2} + \frac{1}{(4(1 + sin(x)))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{-1}{2}ln(-sin(x) + 1) - \frac{1}{2}ln(sin(x) + 1) + \frac{1}{(4sin(x) + 4)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{-1}{2}ln(-sin(x) + 1) - \frac{1}{2}ln(sin(x) + 1) + \frac{1}{(4sin(x) + 4)}\right)}{dx}\\=&\frac{\frac{-1}{2}(-cos(x) + 0)}{(-sin(x) + 1)} - \frac{\frac{1}{2}(cos(x) + 0)}{(sin(x) + 1)} + (\frac{-(4cos(x) + 0)}{(4sin(x) + 4)^{2}})\\=&\frac{cos(x)}{2(-sin(x) + 1)} - \frac{cos(x)}{2(sin(x) + 1)} - \frac{4cos(x)}{(4sin(x) + 4)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!