本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sin(x)cos(x)tan(x)cot(x)csc(x)sec(x) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sin(x)cos(x)tan(x)cot(x)sec(x)csc(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sin(x)cos(x)tan(x)cot(x)sec(x)csc(x)\right)}{dx}\\=&cos(x)cos(x)tan(x)cot(x)sec(x)csc(x) + sin(x)*-sin(x)tan(x)cot(x)sec(x)csc(x) + sin(x)cos(x)sec^{2}(x)(1)cot(x)sec(x)csc(x) + sin(x)cos(x)tan(x)*-csc^{2}(x)sec(x)csc(x) + sin(x)cos(x)tan(x)cot(x)sec(x)tan(x)csc(x) + sin(x)cos(x)tan(x)cot(x)sec(x)*-csc(x)cot(x)\\=&cos^{2}(x)tan(x)cot(x)sec(x)csc(x) - sin^{2}(x)tan(x)cot(x)sec(x)csc(x) + sin(x)cos(x)cot(x)sec^{3}(x)csc(x) - sin(x)cos(x)tan(x)sec(x)csc^{3}(x) + sin(x)cos(x)tan^{2}(x)cot(x)sec(x)csc(x) - sin(x)cos(x)tan(x)cot^{2}(x)sec(x)csc(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!