本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{({x}^{2} + \frac{x}{8})}^{\frac{1}{2}} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = (x^{2} + \frac{1}{8}x)^{\frac{1}{2}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (x^{2} + \frac{1}{8}x)^{\frac{1}{2}}\right)}{dx}\\=&(\frac{\frac{1}{2}(2x + \frac{1}{8})}{(x^{2} + \frac{1}{8}x)^{\frac{1}{2}}})\\=&\frac{x}{(x^{2} + \frac{1}{8}x)^{\frac{1}{2}}} + \frac{1}{16(x^{2} + \frac{1}{8}x)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{x}{(x^{2} + \frac{1}{8}x)^{\frac{1}{2}}} + \frac{1}{16(x^{2} + \frac{1}{8}x)^{\frac{1}{2}}}\right)}{dx}\\=&(\frac{\frac{-1}{2}(2x + \frac{1}{8})}{(x^{2} + \frac{1}{8}x)^{\frac{3}{2}}})x + \frac{1}{(x^{2} + \frac{1}{8}x)^{\frac{1}{2}}} + \frac{(\frac{\frac{-1}{2}(2x + \frac{1}{8})}{(x^{2} + \frac{1}{8}x)^{\frac{3}{2}}})}{16}\\=&\frac{-x^{2}}{(x^{2} + \frac{1}{8}x)^{\frac{3}{2}}} - \frac{x}{8(x^{2} + \frac{1}{8}x)^{\frac{3}{2}}} + \frac{1}{(x^{2} + \frac{1}{8}x)^{\frac{1}{2}}} - \frac{1}{256(x^{2} + \frac{1}{8}x)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!