本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{sin(x)}^{2}{cos(x)}^{2} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sin^{2}(x)cos^{2}(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sin^{2}(x)cos^{2}(x)\right)}{dx}\\=&2sin(x)cos(x)cos^{2}(x) + sin^{2}(x)*-2cos(x)sin(x)\\=&2sin(x)cos^{3}(x) - 2sin^{3}(x)cos(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 2sin(x)cos^{3}(x) - 2sin^{3}(x)cos(x)\right)}{dx}\\=&2cos(x)cos^{3}(x) + 2sin(x)*-3cos^{2}(x)sin(x) - 2*3sin^{2}(x)cos(x)cos(x) - 2sin^{3}(x)*-sin(x)\\=&2cos^{4}(x) - 12sin^{2}(x)cos^{2}(x) + 2sin^{4}(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 2cos^{4}(x) - 12sin^{2}(x)cos^{2}(x) + 2sin^{4}(x)\right)}{dx}\\=&2*-4cos^{3}(x)sin(x) - 12*2sin(x)cos(x)cos^{2}(x) - 12sin^{2}(x)*-2cos(x)sin(x) + 2*4sin^{3}(x)cos(x)\\=& - 32sin(x)cos^{3}(x) + 32sin^{3}(x)cos(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( - 32sin(x)cos^{3}(x) + 32sin^{3}(x)cos(x)\right)}{dx}\\=& - 32cos(x)cos^{3}(x) - 32sin(x)*-3cos^{2}(x)sin(x) + 32*3sin^{2}(x)cos(x)cos(x) + 32sin^{3}(x)*-sin(x)\\=& - 32cos^{4}(x) + 192sin^{2}(x)cos^{2}(x) - 32sin^{4}(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!