本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(x + 1){e}^{(1 - \frac{xln(x)}{(x - 1)})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = x{e}^{(\frac{-xln(x)}{(x - 1)} + 1)} + {e}^{(\frac{-xln(x)}{(x - 1)} + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( x{e}^{(\frac{-xln(x)}{(x - 1)} + 1)} + {e}^{(\frac{-xln(x)}{(x - 1)} + 1)}\right)}{dx}\\=&{e}^{(\frac{-xln(x)}{(x - 1)} + 1)} + x({e}^{(\frac{-xln(x)}{(x - 1)} + 1)}((-(\frac{-(1 + 0)}{(x - 1)^{2}})xln(x) - \frac{ln(x)}{(x - 1)} - \frac{x}{(x - 1)(x)} + 0)ln(e) + \frac{(\frac{-xln(x)}{(x - 1)} + 1)(0)}{(e)})) + ({e}^{(\frac{-xln(x)}{(x - 1)} + 1)}((-(\frac{-(1 + 0)}{(x - 1)^{2}})xln(x) - \frac{ln(x)}{(x - 1)} - \frac{x}{(x - 1)(x)} + 0)ln(e) + \frac{(\frac{-xln(x)}{(x - 1)} + 1)(0)}{(e)}))\\=&{e}^{(\frac{-xln(x)}{(x - 1)} + 1)} + \frac{x^{2}{e}^{(\frac{-xln(x)}{(x - 1)} + 1)}ln(x)}{(x - 1)^{2}} - \frac{x{e}^{(\frac{-xln(x)}{(x - 1)} + 1)}ln(x)}{(x - 1)} + \frac{x{e}^{(\frac{-xln(x)}{(x - 1)} + 1)}ln(x)}{(x - 1)^{2}} - \frac{x{e}^{(\frac{-xln(x)}{(x - 1)} + 1)}}{(x - 1)} - \frac{{e}^{(\frac{-xln(x)}{(x - 1)} + 1)}ln(x)}{(x - 1)} - \frac{{e}^{(\frac{-xln(x)}{(x - 1)} + 1)}}{(x - 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!