本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{{2}^{x}}^{(x - a)} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {{2}^{x}}^{(x - a)}\right)}{dx}\\=&({{2}^{x}}^{(x - a)}((1 + 0)ln({2}^{x}) + \frac{(x - a)(({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)})))}{({2}^{x})}))\\=&{{2}^{x}}^{(x - a)}ln({2}^{x}) + x{{2}^{x}}^{(x - a)}ln(2) - a{{2}^{x}}^{(x - a)}ln(2)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( {{2}^{x}}^{(x - a)}ln({2}^{x}) + x{{2}^{x}}^{(x - a)}ln(2) - a{{2}^{x}}^{(x - a)}ln(2)\right)}{dx}\\=&({{2}^{x}}^{(x - a)}((1 + 0)ln({2}^{x}) + \frac{(x - a)(({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)})))}{({2}^{x})}))ln({2}^{x}) + \frac{{{2}^{x}}^{(x - a)}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))}{({2}^{x})} + {{2}^{x}}^{(x - a)}ln(2) + x({{2}^{x}}^{(x - a)}((1 + 0)ln({2}^{x}) + \frac{(x - a)(({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)})))}{({2}^{x})}))ln(2) + \frac{x{{2}^{x}}^{(x - a)}*0}{(2)} - a({{2}^{x}}^{(x - a)}((1 + 0)ln({2}^{x}) + \frac{(x - a)(({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)})))}{({2}^{x})}))ln(2) - \frac{a{{2}^{x}}^{(x - a)}*0}{(2)}\\=&{{2}^{x}}^{(x - a)}ln^{2}({2}^{x}) + x{{2}^{x}}^{(x - a)}ln(2)ln({2}^{x}) - a{{2}^{x}}^{(x - a)}ln(2)ln({2}^{x}) + 2{{2}^{x}}^{(x - a)}ln(2) + x{{2}^{x}}^{(x - a)}ln({2}^{x})ln(2) + x^{2}{{2}^{x}}^{(x - a)}ln^{2}(2) - 2ax{{2}^{x}}^{(x - a)}ln^{2}(2) - a{{2}^{x}}^{(x - a)}ln({2}^{x})ln(2) + a^{2}{{2}^{x}}^{(x - a)}ln^{2}(2)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!