本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数xcot(x) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( xcot(x)\right)}{dx}\\=&cot(x) + x*-csc^{2}(x)\\=&cot(x) - xcsc^{2}(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( cot(x) - xcsc^{2}(x)\right)}{dx}\\=&-csc^{2}(x) - csc^{2}(x) - x*-2csc^{2}(x)cot(x)\\=&-2csc^{2}(x) + 2xcot(x)csc^{2}(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( -2csc^{2}(x) + 2xcot(x)csc^{2}(x)\right)}{dx}\\=&-2*-2csc^{2}(x)cot(x) + 2cot(x)csc^{2}(x) + 2x*-csc^{2}(x)csc^{2}(x) + 2xcot(x)*-2csc^{2}(x)cot(x)\\=&6cot(x)csc^{2}(x) - 2xcsc^{4}(x) - 4xcot^{2}(x)csc^{2}(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 6cot(x)csc^{2}(x) - 2xcsc^{4}(x) - 4xcot^{2}(x)csc^{2}(x)\right)}{dx}\\=&6*-csc^{2}(x)csc^{2}(x) + 6cot(x)*-2csc^{2}(x)cot(x) - 2csc^{4}(x) - 2x*-4csc^{4}(x)cot(x) - 4cot^{2}(x)csc^{2}(x) - 4x*-2cot(x)csc^{2}(x)csc^{2}(x) - 4xcot^{2}(x)*-2csc^{2}(x)cot(x)\\=&-8csc^{4}(x) - 16cot^{2}(x)csc^{2}(x) + 16xcot(x)csc^{4}(x) + 8xcot^{3}(x)csc^{2}(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!