本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数e^{\frac{-({(x - X)}^{2})}{M}}e^{\frac{-({(y - Y)}^{2})}{N}}e^{Ocos(z)}e^{Pcos(arctan(\frac{y}{x}) - Z)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = e^{\frac{-x^{2}}{M} + \frac{2Xx}{M} - \frac{X^{2}}{M}}e^{\frac{-y^{2}}{N} + \frac{2yY}{N} - \frac{Y^{2}}{N}}e^{Ocos(z)}e^{Pcos(arctan(\frac{y}{x}) - Z)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( e^{\frac{-x^{2}}{M} + \frac{2Xx}{M} - \frac{X^{2}}{M}}e^{\frac{-y^{2}}{N} + \frac{2yY}{N} - \frac{Y^{2}}{N}}e^{Ocos(z)}e^{Pcos(arctan(\frac{y}{x}) - Z)}\right)}{dx}\\=&e^{\frac{-x^{2}}{M} + \frac{2Xx}{M} - \frac{X^{2}}{M}}(\frac{-2x}{M} + \frac{2X}{M} + 0)e^{\frac{-y^{2}}{N} + \frac{2yY}{N} - \frac{Y^{2}}{N}}e^{Ocos(z)}e^{Pcos(arctan(\frac{y}{x}) - Z)} + e^{\frac{-x^{2}}{M} + \frac{2Xx}{M} - \frac{X^{2}}{M}}e^{\frac{-y^{2}}{N} + \frac{2yY}{N} - \frac{Y^{2}}{N}}(0 + 0 + 0)e^{Ocos(z)}e^{Pcos(arctan(\frac{y}{x}) - Z)} + e^{\frac{-x^{2}}{M} + \frac{2Xx}{M} - \frac{X^{2}}{M}}e^{\frac{-y^{2}}{N} + \frac{2yY}{N} - \frac{Y^{2}}{N}}e^{Ocos(z)}O*-sin(z)*0e^{Pcos(arctan(\frac{y}{x}) - Z)} + e^{\frac{-x^{2}}{M} + \frac{2Xx}{M} - \frac{X^{2}}{M}}e^{\frac{-y^{2}}{N} + \frac{2yY}{N} - \frac{Y^{2}}{N}}e^{Ocos(z)}e^{Pcos(arctan(\frac{y}{x}) - Z)}P*-sin(arctan(\frac{y}{x}) - Z)((\frac{(\frac{y*-1}{x^{2}})}{(1 + (\frac{y}{x})^{2})}) + 0)\\=&\frac{-2xe^{\frac{-x^{2}}{M} + \frac{2Xx}{M} - \frac{X^{2}}{M}}e^{\frac{-y^{2}}{N} + \frac{2yY}{N} - \frac{Y^{2}}{N}}e^{Ocos(z)}e^{Pcos(arctan(\frac{y}{x}) - Z)}}{M} + \frac{2Xe^{\frac{-x^{2}}{M} + \frac{2Xx}{M} - \frac{X^{2}}{M}}e^{\frac{-y^{2}}{N} + \frac{2yY}{N} - \frac{Y^{2}}{N}}e^{Ocos(z)}e^{Pcos(arctan(\frac{y}{x}) - Z)}}{M} + \frac{yPe^{\frac{-y^{2}}{N} + \frac{2yY}{N} - \frac{Y^{2}}{N}}e^{Ocos(z)}e^{Pcos(arctan(\frac{y}{x}) - Z)}e^{\frac{-x^{2}}{M} + \frac{2Xx}{M} - \frac{X^{2}}{M}}sin(arctan(\frac{y}{x}) - Z)}{(\frac{y^{2}}{x^{2}} + 1)x^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!