本次共计算 1 个题目:每一题对 y 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(1.5 - x(1 - y))}^{2} + {(2.25 - x(1 - {y}^{2}))}^{2} + {(2.625 - x(1 - {y}^{3}))}^{2} 关于 y 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = x^{2}y^{2} - x^{2}y + 1.5xy - x^{2}y + 1.5xy - x^{2}y - x^{2}y + x^{2}y^{2} + 2.25xy + 2.25xy - x^{2}y - x^{2}y + x^{2}y^{2} + 2.625xy + 2.625xy - 1.5x + x^{2} - 2.25x - 2.625x + x^{2} - 1.5x + x^{2} - 2.625x - 2.25x + 14.203125\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( x^{2}y^{2} - x^{2}y + 1.5xy - x^{2}y + 1.5xy - x^{2}y - x^{2}y + x^{2}y^{2} + 2.25xy + 2.25xy - x^{2}y - x^{2}y + x^{2}y^{2} + 2.625xy + 2.625xy - 1.5x + x^{2} - 2.25x - 2.625x + x^{2} - 1.5x + x^{2} - 2.625x - 2.25x + 14.203125\right)}{dy}\\=&x^{2}*2y - x^{2} + 1.5x - x^{2} + 1.5x - x^{2} - x^{2} + x^{2}*2y + 2.25x + 2.25x - x^{2} - x^{2} + x^{2}*2y + 2.625x + 2.625x + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0\\=&2x^{2}y + 2x^{2}y + 2x^{2}y - x^{2} + 1.5x - x^{2} - x^{2} - x^{2} + 2.25x + 2.25x - x^{2} - x^{2} + 1.5x + 2.625x + 2.625x\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!