本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{x}{((sqrt(1) + {x}^{2})(1 + {x}^{2}))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x}{(sqrt(1) + x^{2}sqrt(1) + x^{4} + x^{2})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x}{(sqrt(1) + x^{2}sqrt(1) + x^{4} + x^{2})}\right)}{dx}\\=&(\frac{-(0*\frac{1}{2}^{\frac{1}{2}} + 2xsqrt(1) + x^{2}*0*\frac{1}{2}^{\frac{1}{2}} + 4x^{3} + 2x)}{(sqrt(1) + x^{2}sqrt(1) + x^{4} + x^{2})^{2}})x + \frac{1}{(sqrt(1) + x^{2}sqrt(1) + x^{4} + x^{2})}\\=& - \frac{2x^{2}sqrt(1)}{(sqrt(1) + x^{2}sqrt(1) + x^{4} + x^{2})^{2}} - \frac{4x^{4}}{(sqrt(1) + x^{2}sqrt(1) + x^{4} + x^{2})^{2}} - \frac{2x^{2}}{(sqrt(1) + x^{2}sqrt(1) + x^{4} + x^{2})^{2}} + \frac{1}{(sqrt(1) + x^{2}sqrt(1) + x^{4} + x^{2})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!