本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{-sin(x)cos(x)}{sqrt({cos(x)}^{2} + 1)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{-sin(x)cos(x)}{sqrt(cos^{2}(x) + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{-sin(x)cos(x)}{sqrt(cos^{2}(x) + 1)}\right)}{dx}\\=&\frac{-cos(x)cos(x)}{sqrt(cos^{2}(x) + 1)} - \frac{sin(x)*-sin(x)}{sqrt(cos^{2}(x) + 1)} - \frac{sin(x)cos(x)*-(-2cos(x)sin(x) + 0)*\frac{1}{2}}{(cos^{2}(x) + 1)(cos^{2}(x) + 1)^{\frac{1}{2}}}\\=&\frac{-cos^{2}(x)}{sqrt(cos^{2}(x) + 1)} + \frac{sin^{2}(x)}{sqrt(cos^{2}(x) + 1)} - \frac{sin^{2}(x)cos^{2}(x)}{(cos^{2}(x) + 1)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!