本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{e}^{x}sin(x){\frac{1}{x}}^{5}ln(x) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{{e}^{x}ln(x)sin(x)}{x^{5}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{{e}^{x}ln(x)sin(x)}{x^{5}}\right)}{dx}\\=&\frac{-5{e}^{x}ln(x)sin(x)}{x^{6}} + \frac{({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))ln(x)sin(x)}{x^{5}} + \frac{{e}^{x}sin(x)}{x^{5}(x)} + \frac{{e}^{x}ln(x)cos(x)}{x^{5}}\\=&\frac{-5{e}^{x}ln(x)sin(x)}{x^{6}} + \frac{{e}^{x}ln(x)sin(x)}{x^{5}} + \frac{{e}^{x}sin(x)}{x^{6}} + \frac{{e}^{x}ln(x)cos(x)}{x^{5}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!