本次共计算 1 个题目:每一题对 p 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(p - f)(\frac{1}{2} + \frac{(s(p - q) + a(hm - kn))(ts - ab)}{2}) + (hm - g)(\frac{1}{2} + \frac{(t(hm - kn) + b(p - q))(ts - ab)}{2}) 关于 p 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{1}{2}p + \frac{1}{2}s^{2}tp^{2} - \frac{1}{2}sabp^{2} - \frac{1}{2}s^{2}qtp + \frac{1}{2}sqabp + \frac{1}{2}sahmtp - \frac{1}{2}a^{2}hmbp - \frac{1}{2}sakntp + \frac{1}{2}a^{2}knbp - \frac{1}{2}fs^{2}tp + \frac{1}{2}fsabp + \frac{1}{2}fs^{2}qt - \frac{1}{2}fsqab - \frac{1}{2}fsahmt + \frac{1}{2}fa^{2}hmb + \frac{1}{2}fsaknt - \frac{1}{2}fa^{2}knb - \frac{1}{2}f + \frac{1}{2}hm + \frac{1}{2}shmtbp + \frac{1}{2}ahmtbg - \frac{1}{2}shmknt^{2} + \frac{1}{2}ahmkntb - \frac{1}{2}shmt^{2}g - \frac{1}{2}ahmb^{2}p - \frac{1}{2}sqhmtb + \frac{1}{2}qahmb^{2} - \frac{1}{2}g + \frac{1}{2}sh^{2}m^{2}t^{2} - \frac{1}{2}ah^{2}m^{2}tb + \frac{1}{2}sknt^{2}g - \frac{1}{2}akntbg - \frac{1}{2}stbgp + \frac{1}{2}ab^{2}gp + \frac{1}{2}sqtbg - \frac{1}{2}qab^{2}g\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1}{2}p + \frac{1}{2}s^{2}tp^{2} - \frac{1}{2}sabp^{2} - \frac{1}{2}s^{2}qtp + \frac{1}{2}sqabp + \frac{1}{2}sahmtp - \frac{1}{2}a^{2}hmbp - \frac{1}{2}sakntp + \frac{1}{2}a^{2}knbp - \frac{1}{2}fs^{2}tp + \frac{1}{2}fsabp + \frac{1}{2}fs^{2}qt - \frac{1}{2}fsqab - \frac{1}{2}fsahmt + \frac{1}{2}fa^{2}hmb + \frac{1}{2}fsaknt - \frac{1}{2}fa^{2}knb - \frac{1}{2}f + \frac{1}{2}hm + \frac{1}{2}shmtbp + \frac{1}{2}ahmtbg - \frac{1}{2}shmknt^{2} + \frac{1}{2}ahmkntb - \frac{1}{2}shmt^{2}g - \frac{1}{2}ahmb^{2}p - \frac{1}{2}sqhmtb + \frac{1}{2}qahmb^{2} - \frac{1}{2}g + \frac{1}{2}sh^{2}m^{2}t^{2} - \frac{1}{2}ah^{2}m^{2}tb + \frac{1}{2}sknt^{2}g - \frac{1}{2}akntbg - \frac{1}{2}stbgp + \frac{1}{2}ab^{2}gp + \frac{1}{2}sqtbg - \frac{1}{2}qab^{2}g\right)}{dp}\\=&\frac{1}{2} + \frac{1}{2}s^{2}t*2p - \frac{1}{2}sab*2p - \frac{1}{2}s^{2}qt + \frac{1}{2}sqab + \frac{1}{2}sahmt - \frac{1}{2}a^{2}hmb - \frac{1}{2}saknt + \frac{1}{2}a^{2}knb - \frac{1}{2}fs^{2}t + \frac{1}{2}fsab + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + \frac{1}{2}shmtb + 0 + 0 + 0 + 0 - \frac{1}{2}ahmb^{2} + 0 + 0 + 0 + 0 + 0 + 0 + 0 - \frac{1}{2}stbg + \frac{1}{2}ab^{2}g + 0 + 0\\=&s^{2}tp - sabp - \frac{s^{2}qt}{2} + \frac{sqab}{2} + \frac{sahmt}{2} - \frac{a^{2}hmb}{2} - \frac{saknt}{2} + \frac{a^{2}knb}{2} - \frac{fs^{2}t}{2} + \frac{fsab}{2} + \frac{shmtb}{2} - \frac{ahmb^{2}}{2} - \frac{stbg}{2} + \frac{ab^{2}g}{2} + \frac{1}{2}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!