本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{e}^{x} + ln(x){\frac{1}{x}}^{x} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = {\frac{1}{x}}^{x}ln(x) + {e}^{x}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {\frac{1}{x}}^{x}ln(x) + {e}^{x}\right)}{dx}\\=&({\frac{1}{x}}^{x}((1)ln(\frac{1}{x}) + \frac{(x)(\frac{-1}{x^{2}})}{(\frac{1}{x})}))ln(x) + \frac{{\frac{1}{x}}^{x}}{(x)} + ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&{\frac{1}{x}}^{x}ln(\frac{1}{x})ln(x) - {\frac{1}{x}}^{x}ln(x) + \frac{{\frac{1}{x}}^{x}}{x} + {e}^{x}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( {\frac{1}{x}}^{x}ln(\frac{1}{x})ln(x) - {\frac{1}{x}}^{x}ln(x) + \frac{{\frac{1}{x}}^{x}}{x} + {e}^{x}\right)}{dx}\\=&({\frac{1}{x}}^{x}((1)ln(\frac{1}{x}) + \frac{(x)(\frac{-1}{x^{2}})}{(\frac{1}{x})}))ln(\frac{1}{x})ln(x) + \frac{{\frac{1}{x}}^{x}*-ln(x)}{(\frac{1}{x})x^{2}} + \frac{{\frac{1}{x}}^{x}ln(\frac{1}{x})}{(x)} - ({\frac{1}{x}}^{x}((1)ln(\frac{1}{x}) + \frac{(x)(\frac{-1}{x^{2}})}{(\frac{1}{x})}))ln(x) - \frac{{\frac{1}{x}}^{x}}{(x)} + \frac{-{\frac{1}{x}}^{x}}{x^{2}} + \frac{({\frac{1}{x}}^{x}((1)ln(\frac{1}{x}) + \frac{(x)(\frac{-1}{x^{2}})}{(\frac{1}{x})}))}{x} + ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&{\frac{1}{x}}^{x}ln^{2}(\frac{1}{x})ln(x) - 2{\frac{1}{x}}^{x}ln(\frac{1}{x})ln(x) - \frac{{\frac{1}{x}}^{x}ln(x)}{x} + \frac{2{\frac{1}{x}}^{x}ln(\frac{1}{x})}{x} + {\frac{1}{x}}^{x}ln(x) - \frac{2{\frac{1}{x}}^{x}}{x} - \frac{{\frac{1}{x}}^{x}}{x^{2}} + {e}^{x}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!