本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{-x}{(C + {x}^{2})} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{-x}{(C + x^{2})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{-x}{(C + x^{2})}\right)}{dx}\\=&-(\frac{-(0 + 2x)}{(C + x^{2})^{2}})x - \frac{1}{(C + x^{2})}\\=&\frac{2x^{2}}{(C + x^{2})^{2}} - \frac{1}{(C + x^{2})}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{2x^{2}}{(C + x^{2})^{2}} - \frac{1}{(C + x^{2})}\right)}{dx}\\=&2(\frac{-2(0 + 2x)}{(C + x^{2})^{3}})x^{2} + \frac{2*2x}{(C + x^{2})^{2}} - (\frac{-(0 + 2x)}{(C + x^{2})^{2}})\\=&\frac{-8x^{3}}{(C + x^{2})^{3}} + \frac{6x}{(C + x^{2})^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!