本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{e}^{sin(x)} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {e}^{sin(x)}\right)}{dx}\\=&({e}^{sin(x)}((cos(x))ln(e) + \frac{(sin(x))(0)}{(e)}))\\=&{e}^{sin(x)}cos(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( {e}^{sin(x)}cos(x)\right)}{dx}\\=&({e}^{sin(x)}((cos(x))ln(e) + \frac{(sin(x))(0)}{(e)}))cos(x) + {e}^{sin(x)}*-sin(x)\\=&{e}^{sin(x)}cos^{2}(x) - {e}^{sin(x)}sin(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( {e}^{sin(x)}cos^{2}(x) - {e}^{sin(x)}sin(x)\right)}{dx}\\=&({e}^{sin(x)}((cos(x))ln(e) + \frac{(sin(x))(0)}{(e)}))cos^{2}(x) + {e}^{sin(x)}*-2cos(x)sin(x) - ({e}^{sin(x)}((cos(x))ln(e) + \frac{(sin(x))(0)}{(e)}))sin(x) - {e}^{sin(x)}cos(x)\\=&{e}^{sin(x)}cos^{3}(x) - 3{e}^{sin(x)}sin(x)cos(x) - {e}^{sin(x)}cos(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( {e}^{sin(x)}cos^{3}(x) - 3{e}^{sin(x)}sin(x)cos(x) - {e}^{sin(x)}cos(x)\right)}{dx}\\=&({e}^{sin(x)}((cos(x))ln(e) + \frac{(sin(x))(0)}{(e)}))cos^{3}(x) + {e}^{sin(x)}*-3cos^{2}(x)sin(x) - 3({e}^{sin(x)}((cos(x))ln(e) + \frac{(sin(x))(0)}{(e)}))sin(x)cos(x) - 3{e}^{sin(x)}cos(x)cos(x) - 3{e}^{sin(x)}sin(x)*-sin(x) - ({e}^{sin(x)}((cos(x))ln(e) + \frac{(sin(x))(0)}{(e)}))cos(x) - {e}^{sin(x)}*-sin(x)\\=&{e}^{sin(x)}cos^{4}(x) - 6{e}^{sin(x)}sin(x)cos^{2}(x) - 4{e}^{sin(x)}cos^{2}(x) + 3{e}^{sin(x)}sin^{2}(x) + {e}^{sin(x)}sin(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!