本次共计算 1 个题目:每一题对 a 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(-(\frac{aa}{(b)})t(a - 1)e^{-(\frac{t}{b})a}){\frac{1}{(1 - e^{-(\frac{t}{b})a})}}^{2} 关于 a 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{-ta^{3}e^{\frac{-ta}{b}}}{(-e^{\frac{-ta}{b}} + 1)^{2}b} + \frac{ta^{2}e^{\frac{-ta}{b}}}{(-e^{\frac{-ta}{b}} + 1)^{2}b}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{-ta^{3}e^{\frac{-ta}{b}}}{(-e^{\frac{-ta}{b}} + 1)^{2}b} + \frac{ta^{2}e^{\frac{-ta}{b}}}{(-e^{\frac{-ta}{b}} + 1)^{2}b}\right)}{da}\\=&\frac{-(\frac{-2(\frac{-e^{\frac{-ta}{b}}*-t}{b} + 0)}{(-e^{\frac{-ta}{b}} + 1)^{3}})ta^{3}e^{\frac{-ta}{b}}}{b} - \frac{t*3a^{2}e^{\frac{-ta}{b}}}{(-e^{\frac{-ta}{b}} + 1)^{2}b} - \frac{ta^{3}e^{\frac{-ta}{b}}*-t}{(-e^{\frac{-ta}{b}} + 1)^{2}bb} + \frac{(\frac{-2(\frac{-e^{\frac{-ta}{b}}*-t}{b} + 0)}{(-e^{\frac{-ta}{b}} + 1)^{3}})ta^{2}e^{\frac{-ta}{b}}}{b} + \frac{t*2ae^{\frac{-ta}{b}}}{(-e^{\frac{-ta}{b}} + 1)^{2}b} + \frac{ta^{2}e^{\frac{-ta}{b}}*-t}{(-e^{\frac{-ta}{b}} + 1)^{2}bb}\\=&\frac{2t^{2}a^{3}e^{{\frac{-ta}{b}}*{2}}}{(-e^{\frac{-ta}{b}} + 1)^{3}b^{2}} - \frac{3ta^{2}e^{\frac{-ta}{b}}}{(-e^{\frac{-ta}{b}} + 1)^{2}b} + \frac{t^{2}a^{3}e^{\frac{-ta}{b}}}{(-e^{\frac{-ta}{b}} + 1)^{2}b^{2}} - \frac{2t^{2}a^{2}e^{{\frac{-ta}{b}}*{2}}}{(-e^{\frac{-ta}{b}} + 1)^{3}b^{2}} + \frac{2tae^{\frac{-ta}{b}}}{(-e^{\frac{-ta}{b}} + 1)^{2}b} - \frac{t^{2}a^{2}e^{\frac{-ta}{b}}}{(-e^{\frac{-ta}{b}} + 1)^{2}b^{2}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{2t^{2}a^{3}e^{{\frac{-ta}{b}}*{2}}}{(-e^{\frac{-ta}{b}} + 1)^{3}b^{2}} - \frac{3ta^{2}e^{\frac{-ta}{b}}}{(-e^{\frac{-ta}{b}} + 1)^{2}b} + \frac{t^{2}a^{3}e^{\frac{-ta}{b}}}{(-e^{\frac{-ta}{b}} + 1)^{2}b^{2}} - \frac{2t^{2}a^{2}e^{{\frac{-ta}{b}}*{2}}}{(-e^{\frac{-ta}{b}} + 1)^{3}b^{2}} + \frac{2tae^{\frac{-ta}{b}}}{(-e^{\frac{-ta}{b}} + 1)^{2}b} - \frac{t^{2}a^{2}e^{\frac{-ta}{b}}}{(-e^{\frac{-ta}{b}} + 1)^{2}b^{2}}\right)}{da}\\=&\frac{2(\frac{-3(\frac{-e^{\frac{-ta}{b}}*-t}{b} + 0)}{(-e^{\frac{-ta}{b}} + 1)^{4}})t^{2}a^{3}e^{{\frac{-ta}{b}}*{2}}}{b^{2}} + \frac{2t^{2}*3a^{2}e^{{\frac{-ta}{b}}*{2}}}{(-e^{\frac{-ta}{b}} + 1)^{3}b^{2}} + \frac{2t^{2}a^{3}*2e^{\frac{-ta}{b}}e^{\frac{-ta}{b}}*-t}{(-e^{\frac{-ta}{b}} + 1)^{3}b^{2}b} - \frac{3(\frac{-2(\frac{-e^{\frac{-ta}{b}}*-t}{b} + 0)}{(-e^{\frac{-ta}{b}} + 1)^{3}})ta^{2}e^{\frac{-ta}{b}}}{b} - \frac{3t*2ae^{\frac{-ta}{b}}}{(-e^{\frac{-ta}{b}} + 1)^{2}b} - \frac{3ta^{2}e^{\frac{-ta}{b}}*-t}{(-e^{\frac{-ta}{b}} + 1)^{2}bb} + \frac{(\frac{-2(\frac{-e^{\frac{-ta}{b}}*-t}{b} + 0)}{(-e^{\frac{-ta}{b}} + 1)^{3}})t^{2}a^{3}e^{\frac{-ta}{b}}}{b^{2}} + \frac{t^{2}*3a^{2}e^{\frac{-ta}{b}}}{(-e^{\frac{-ta}{b}} + 1)^{2}b^{2}} + \frac{t^{2}a^{3}e^{\frac{-ta}{b}}*-t}{(-e^{\frac{-ta}{b}} + 1)^{2}b^{2}b} - \frac{2(\frac{-3(\frac{-e^{\frac{-ta}{b}}*-t}{b} + 0)}{(-e^{\frac{-ta}{b}} + 1)^{4}})t^{2}a^{2}e^{{\frac{-ta}{b}}*{2}}}{b^{2}} - \frac{2t^{2}*2ae^{{\frac{-ta}{b}}*{2}}}{(-e^{\frac{-ta}{b}} + 1)^{3}b^{2}} - \frac{2t^{2}a^{2}*2e^{\frac{-ta}{b}}e^{\frac{-ta}{b}}*-t}{(-e^{\frac{-ta}{b}} + 1)^{3}b^{2}b} + \frac{2(\frac{-2(\frac{-e^{\frac{-ta}{b}}*-t}{b} + 0)}{(-e^{\frac{-ta}{b}} + 1)^{3}})tae^{\frac{-ta}{b}}}{b} + \frac{2te^{\frac{-ta}{b}}}{(-e^{\frac{-ta}{b}} + 1)^{2}b} + \frac{2tae^{\frac{-ta}{b}}*-t}{(-e^{\frac{-ta}{b}} + 1)^{2}bb} - \frac{(\frac{-2(\frac{-e^{\frac{-ta}{b}}*-t}{b} + 0)}{(-e^{\frac{-ta}{b}} + 1)^{3}})t^{2}a^{2}e^{\frac{-ta}{b}}}{b^{2}} - \frac{t^{2}*2ae^{\frac{-ta}{b}}}{(-e^{\frac{-ta}{b}} + 1)^{2}b^{2}} - \frac{t^{2}a^{2}e^{\frac{-ta}{b}}*-t}{(-e^{\frac{-ta}{b}} + 1)^{2}b^{2}b}\\=&\frac{-6t^{3}a^{3}e^{{\frac{-ta}{b}}*{3}}}{(-e^{\frac{-ta}{b}} + 1)^{4}b^{3}} + \frac{12t^{2}a^{2}e^{{\frac{-ta}{b}}*{2}}}{(-e^{\frac{-ta}{b}} + 1)^{3}b^{2}} - \frac{6t^{3}a^{3}e^{{\frac{-ta}{b}}*{2}}}{(-e^{\frac{-ta}{b}} + 1)^{3}b^{3}} - \frac{6tae^{\frac{-ta}{b}}}{(-e^{\frac{-ta}{b}} + 1)^{2}b} + \frac{6t^{2}a^{2}e^{\frac{-ta}{b}}}{(-e^{\frac{-ta}{b}} + 1)^{2}b^{2}} - \frac{t^{3}a^{3}e^{\frac{-ta}{b}}}{(-e^{\frac{-ta}{b}} + 1)^{2}b^{3}} + \frac{6t^{3}a^{2}e^{{\frac{-ta}{b}}*{3}}}{(-e^{\frac{-ta}{b}} + 1)^{4}b^{3}} - \frac{8t^{2}ae^{{\frac{-ta}{b}}*{2}}}{(-e^{\frac{-ta}{b}} + 1)^{3}b^{2}} + \frac{6t^{3}a^{2}e^{{\frac{-ta}{b}}*{2}}}{(-e^{\frac{-ta}{b}} + 1)^{3}b^{3}} + \frac{2te^{\frac{-ta}{b}}}{(-e^{\frac{-ta}{b}} + 1)^{2}b} - \frac{4t^{2}ae^{\frac{-ta}{b}}}{(-e^{\frac{-ta}{b}} + 1)^{2}b^{2}} + \frac{t^{3}a^{2}e^{\frac{-ta}{b}}}{(-e^{\frac{-ta}{b}} + 1)^{2}b^{3}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!