本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(x + 15){(x + 1)}^{2}{\frac{1}{(x - 6)}}^{4} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x^{3}}{(x - 6)^{4}} + \frac{17x^{2}}{(x - 6)^{4}} + \frac{31x}{(x - 6)^{4}} + \frac{15}{(x - 6)^{4}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x^{3}}{(x - 6)^{4}} + \frac{17x^{2}}{(x - 6)^{4}} + \frac{31x}{(x - 6)^{4}} + \frac{15}{(x - 6)^{4}}\right)}{dx}\\=&(\frac{-4(1 + 0)}{(x - 6)^{5}})x^{3} + \frac{3x^{2}}{(x - 6)^{4}} + 17(\frac{-4(1 + 0)}{(x - 6)^{5}})x^{2} + \frac{17*2x}{(x - 6)^{4}} + 31(\frac{-4(1 + 0)}{(x - 6)^{5}})x + \frac{31}{(x - 6)^{4}} + 15(\frac{-4(1 + 0)}{(x - 6)^{5}})\\=&\frac{-4x^{3}}{(x - 6)^{5}} + \frac{3x^{2}}{(x - 6)^{4}} - \frac{68x^{2}}{(x - 6)^{5}} + \frac{34x}{(x - 6)^{4}} - \frac{124x}{(x - 6)^{5}} - \frac{60}{(x - 6)^{5}} + \frac{31}{(x - 6)^{4}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!