数学
         
语言:中文    Language:English
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案

    本次共计算 1 个题目:每一题对 x 求 5 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数sin(xcos(x)) 关于 x 的 5 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ \\ &\color{blue}{函数的 5 阶导数:} \\=&15cos^{3}(x)cos(xcos(x)) - 15sin(xcos(x))sin(x)cos^{3}(x) + 21xsin^{2}(x)sin(xcos(x))cos^{2}(x) - 45sin^{2}(x)cos(xcos(x))cos(x) - 5sin(x)sin(xcos(x))cos^{3}(x) - 2xsin(x)cos(xcos(x))cos^{4}(x) - 3xsin(x)cos^{4}(x)cos(xcos(x)) + 7x^{2}sin^{2}(x)cos(xcos(x))cos^{3}(x) - 15sin^{2}(x)cos(x)cos(xcos(x)) - 70xsin(x)cos^{2}(x)cos(xcos(x)) + 18x^{2}sin(x)sin(xcos(x))cos^{3}(x) + 3x^{2}sin^{2}(x)cos^{3}(x)cos(xcos(x)) + 39xsin(xcos(x))sin^{2}(x)cos^{2}(x) - 9x^{3}sin^{3}(x)cos(xcos(x))cos^{2}(x) - 39x^{2}sin^{3}(x)sin(xcos(x))cos(x) + 12x^{3}sin(x)cos^{2}(x)cos(xcos(x)) + cos(xcos(x))cos^{5}(x) - 75sin(x)sin(xcos(x))cos(x) + 53x^{2}sin^{2}(x)cos(xcos(x))cos(x) + 12x^{2}sin(xcos(x))sin(x)cos^{3}(x) - 60xsin(x)cos(xcos(x))cos^{2}(x) + 57x^{2}sin^{2}(x)cos(x)cos(xcos(x)) - 12x^{2}cos^{3}(x)cos(xcos(x)) - x^{3}sin^{3}(x)cos^{2}(x)cos(xcos(x)) - 24x^{3}sin^{2}(x)sin(xcos(x))cos^{2}(x) + 5x^{4}sin^{4}(x)cos(xcos(x))cos(x) - 6x^{3}sin(xcos(x))sin^{2}(x)cos^{2}(x) - 21x^{2}sin(xcos(x))sin^{3}(x)cos(x) + 3x^{3}sin(x)cos(xcos(x))cos^{2}(x) + 60xsin^{3}(x)cos(xcos(x)) + 10x^{4}sin^{3}(x)sin(xcos(x))cos(x) + 15x^{2}sin(x)sin(xcos(x))cos(x) - 10x^{3}sin^{3}(x)cos(xcos(x)) - 35xsin(xcos(x))cos^{2}(x) + 39xsin^{2}(x)sin(xcos(x)) - 5sin(xcos(x))sin(x)cos(x) + xsin(xcos(x))sin^{2}(x) + 15cos(xcos(x))cos^{3}(x) + 5cos(x)cos(xcos(x)) - xsin(x)cos(xcos(x)) + 19x^{3}sin^{4}(x)sin(xcos(x)) + x^{3}sin(xcos(x))sin^{4}(x) - 3x^{2}cos(xcos(x))cos^{3}(x) - 10xsin(xcos(x))cos^{4}(x) - x^{5}sin^{5}(x)cos(xcos(x))\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。