本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sqrt(sqrt(sqrt(\frac{xln(x)}{ln({x}^{x})}))) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sqrt(sqrt(sqrt(\frac{xln(x)}{ln({x}^{x})})))\right)}{dx}\\=&\frac{(\frac{ln(x)}{ln({x}^{x})} + \frac{x}{(x)ln({x}^{x})} + \frac{xln(x)*-({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))}{ln^{2}({x}^{x})({x}^{x})})*\frac{1}{2}*\frac{1}{2}*\frac{1}{2}}{(\frac{xln(x)}{ln({x}^{x})})^{\frac{1}{2}}(sqrt(\frac{xln(x)}{ln({x}^{x})}))^{\frac{1}{2}}(sqrt(sqrt(\frac{xln(x)}{ln({x}^{x})})))^{\frac{1}{2}}}\\=&\frac{ln^{\frac{1}{2}}(x)}{8x^{\frac{1}{2}}ln^{\frac{1}{2}}({x}^{x})sqrt(\frac{xln(x)}{ln({x}^{x})})^{\frac{1}{2}}sqrt(sqrt(\frac{xln(x)}{ln({x}^{x})}))^{\frac{1}{2}}} + \frac{1}{8x^{\frac{1}{2}}ln^{\frac{1}{2}}(x)ln^{\frac{1}{2}}({x}^{x})sqrt(\frac{xln(x)}{ln({x}^{x})})^{\frac{1}{2}}sqrt(sqrt(\frac{xln(x)}{ln({x}^{x})}))^{\frac{1}{2}}} - \frac{x^{\frac{1}{2}}ln^{\frac{3}{2}}(x)}{8ln^{\frac{3}{2}}({x}^{x})sqrt(\frac{xln(x)}{ln({x}^{x})})^{\frac{1}{2}}sqrt(sqrt(\frac{xln(x)}{ln({x}^{x})}))^{\frac{1}{2}}} - \frac{x^{\frac{1}{2}}ln^{\frac{1}{2}}(x)}{8ln^{\frac{3}{2}}({x}^{x})sqrt(\frac{xln(x)}{ln({x}^{x})})^{\frac{1}{2}}sqrt(sqrt(\frac{xln(x)}{ln({x}^{x})}))^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!