本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(cos(3x + 1))}^{99999999} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = cos^{99999999}(3x + 1)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( cos^{99999999}(3x + 1)\right)}{dx}\\=&-99999999cos^{99999998}(3x + 1)sin(3x + 1)(3 + 0)\\=&-299999997sin(3x + 1)cos^{99999998}(3x + 1)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( -299999997sin(3x + 1)cos^{99999998}(3x + 1)\right)}{dx}\\=&-299999997cos(3x + 1)(3 + 0)cos^{99999998}(3x + 1) - 299999997sin(3x + 1)*-99999998cos^{99999997}(3x + 1)sin(3x + 1)(3 + 0)\\=&-899999991cos^{99999999}(3x + 1) + 89999997300000018sin^{2}(3x + 1)cos^{99999997}(3x + 1)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( -899999991cos^{99999999}(3x + 1) + 89999997300000018sin^{2}(3x + 1)cos^{99999997}(3x + 1)\right)}{dx}\\=&-899999991*-99999999cos^{99999998}(3x + 1)sin(3x + 1)(3 + 0) + 89999997300000018*2sin(3x + 1)cos(3x + 1)(3 + 0)cos^{99999997}(3x + 1) + 89999997300000018sin^{2}(3x + 1)*-99999997cos^{99999996}(3x + 1)sin(3x + 1)(3 + 0)\\=&809999978400000135sin(3x + 1)cos^{99999998}(3x + 1) + 2858598650842445730sin^{3}(3x + 1)cos^{99999996}(3x + 1)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 809999978400000135sin(3x + 1)cos^{99999998}(3x + 1) + 2858598650842445730sin^{3}(3x + 1)cos^{99999996}(3x + 1)\right)}{dx}\\=&809999978400000135cos(3x + 1)(3 + 0)cos^{99999998}(3x + 1) + 809999978400000135sin(3x + 1)*-99999998cos^{99999997}(3x + 1)sin(3x + 1)(3 + 0) + 2858598650842445730*3sin^{2}(3x + 1)cos(3x + 1)(3 + 0)cos^{99999996}(3x + 1) + 2858598650842445730sin^{3}(3x + 1)*-99999996cos^{99999995}(3x + 1)sin(3x + 1)(3 + 0)\\=&2429999935200000405cos^{99999999}(3x + 1) - 7125456408764632356sin^{2}(3x + 1)cos^{99999997}(3x + 1) - 2822967109520099944sin^{4}(3x + 1)cos^{99999995}(3x + 1)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!