本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{ln(sin(x))}{(2cos(x)sin(x))} - \frac{1}{(2ln(sin(x)))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{\frac{1}{2}ln(sin(x))}{sin(x)cos(x)} - \frac{\frac{1}{2}}{ln(sin(x))}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{\frac{1}{2}ln(sin(x))}{sin(x)cos(x)} - \frac{\frac{1}{2}}{ln(sin(x))}\right)}{dx}\\=&\frac{\frac{1}{2}cos(x)}{(sin(x))sin(x)cos(x)} + \frac{\frac{1}{2}ln(sin(x))*-cos(x)}{sin^{2}(x)cos(x)} + \frac{\frac{1}{2}ln(sin(x))sin(x)}{sin(x)cos^{2}(x)} - \frac{\frac{1}{2}*-cos(x)}{ln^{2}(sin(x))(sin(x))}\\=&\frac{1}{2sin^{2}(x)} + \frac{cos(x)}{2ln^{2}(sin(x))sin(x)} + \frac{ln(sin(x))}{2cos^{2}(x)} - \frac{ln(sin(x))}{2sin^{2}(x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!