本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sqrt(arcsin(114514)x - {sqrt(1919810x)}^{arcsin(114514)}x - sqrt(1919810x))*114514 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 114514sqrt(xarcsin(114514) - x{sqrt(1919810x)}^{arcsin(114514)} - sqrt(1919810x))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 114514sqrt(xarcsin(114514) - x{sqrt(1919810x)}^{arcsin(114514)} - sqrt(1919810x))\right)}{dx}\\=&\frac{114514(arcsin(114514) + x(\frac{(0)}{((1 - (114514)^{2})^{\frac{1}{2}})}) - {sqrt(1919810x)}^{arcsin(114514)} - x({sqrt(1919810x)}^{arcsin(114514)}(((\frac{(0)}{((1 - (114514)^{2})^{\frac{1}{2}})}))ln(sqrt(1919810x)) + \frac{(arcsin(114514))(\frac{1919810*\frac{1}{2}}{(1919810x)^{\frac{1}{2}}})}{(sqrt(1919810x))})) - \frac{1919810*\frac{1}{2}}{(1919810x)^{\frac{1}{2}}})*\frac{1}{2}}{(xarcsin(114514) - x{sqrt(1919810x)}^{arcsin(114514)} - sqrt(1919810x))^{\frac{1}{2}}}\\=&\frac{57257arcsin(114514)}{(xarcsin(114514) - x{sqrt(1919810x)}^{arcsin(114514)} - sqrt(1919810x))^{\frac{1}{2}}} - \frac{57257{sqrt(1919810x)}^{arcsin(114514)}}{(xarcsin(114514) - x{sqrt(1919810x)}^{arcsin(114514)} - sqrt(1919810x))^{\frac{1}{2}}} - \frac{54961280585x^{\frac{1}{2}}{sqrt(1919810x)}^{arcsin(114514)}arcsin(114514)}{1919810^{\frac{1}{2}}(xarcsin(114514) - x{sqrt(1919810x)}^{arcsin(114514)} - sqrt(1919810x))^{\frac{1}{2}}sqrt(1919810x)} - \frac{54961280585}{1919810^{\frac{1}{2}}(xarcsin(114514) - x{sqrt(1919810x)}^{arcsin(114514)} - sqrt(1919810x))^{\frac{1}{2}}x^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!