本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(\frac{(90 - 3x)}{(3 - \frac{49}{x})} + \frac{(180 - 7x)}{(\frac{49}{x} - 2)})}{(\frac{49}{x})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = - \frac{\frac{3}{49}x^{2}}{(\frac{-49}{x} + 3)} - \frac{\frac{1}{7}x^{2}}{(\frac{49}{x} - 2)} + \frac{\frac{180}{49}x}{(\frac{49}{x} - 2)} + \frac{\frac{90}{49}x}{(\frac{-49}{x} + 3)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( - \frac{\frac{3}{49}x^{2}}{(\frac{-49}{x} + 3)} - \frac{\frac{1}{7}x^{2}}{(\frac{49}{x} - 2)} + \frac{\frac{180}{49}x}{(\frac{49}{x} - 2)} + \frac{\frac{90}{49}x}{(\frac{-49}{x} + 3)}\right)}{dx}\\=& - \frac{3}{49}(\frac{-(\frac{-49*-1}{x^{2}} + 0)}{(\frac{-49}{x} + 3)^{2}})x^{2} - \frac{\frac{3}{49}*2x}{(\frac{-49}{x} + 3)} - \frac{1}{7}(\frac{-(\frac{49*-1}{x^{2}} + 0)}{(\frac{49}{x} - 2)^{2}})x^{2} - \frac{\frac{1}{7}*2x}{(\frac{49}{x} - 2)} + \frac{180}{49}(\frac{-(\frac{49*-1}{x^{2}} + 0)}{(\frac{49}{x} - 2)^{2}})x + \frac{\frac{180}{49}}{(\frac{49}{x} - 2)} + \frac{90}{49}(\frac{-(\frac{-49*-1}{x^{2}} + 0)}{(\frac{-49}{x} + 3)^{2}})x + \frac{\frac{90}{49}}{(\frac{-49}{x} + 3)}\\=&\frac{180}{(\frac{49}{x} - 2)^{2}x} - \frac{6x}{49(\frac{-49}{x} + 3)} - \frac{90}{(\frac{-49}{x} + 3)^{2}x} - \frac{2x}{7(\frac{49}{x} - 2)} + \frac{3}{(\frac{-49}{x} + 3)^{2}} - \frac{7}{(\frac{49}{x} - 2)^{2}} + \frac{180}{49(\frac{49}{x} - 2)} + \frac{90}{49(\frac{-49}{x} + 3)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!