本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{((1 + x)ln(1 + x) - xln(x))}{((1 + x)ln(x))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{ln(x + 1)}{(ln(x) + xln(x))} + \frac{xln(x + 1)}{(ln(x) + xln(x))} - \frac{xln(x)}{(ln(x) + xln(x))}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{ln(x + 1)}{(ln(x) + xln(x))} + \frac{xln(x + 1)}{(ln(x) + xln(x))} - \frac{xln(x)}{(ln(x) + xln(x))}\right)}{dx}\\=&(\frac{-(\frac{1}{(x)} + ln(x) + \frac{x}{(x)})}{(ln(x) + xln(x))^{2}})ln(x + 1) + \frac{(1 + 0)}{(ln(x) + xln(x))(x + 1)} + (\frac{-(\frac{1}{(x)} + ln(x) + \frac{x}{(x)})}{(ln(x) + xln(x))^{2}})xln(x + 1) + \frac{ln(x + 1)}{(ln(x) + xln(x))} + \frac{x(1 + 0)}{(ln(x) + xln(x))(x + 1)} - (\frac{-(\frac{1}{(x)} + ln(x) + \frac{x}{(x)})}{(ln(x) + xln(x))^{2}})xln(x) - \frac{ln(x)}{(ln(x) + xln(x))} - \frac{x}{(ln(x) + xln(x))(x)}\\=& - \frac{ln(x)ln(x + 1)}{(ln(x) + xln(x))^{2}} - \frac{2ln(x + 1)}{(ln(x) + xln(x))^{2}} - \frac{xln(x)ln(x + 1)}{(ln(x) + xln(x))^{2}} + \frac{xln^{2}(x)}{(ln(x) + xln(x))^{2}} - \frac{ln(x + 1)}{(ln(x) + xln(x))^{2}x} + \frac{xln(x)}{(ln(x) + xln(x))^{2}} - \frac{xln(x + 1)}{(ln(x) + xln(x))^{2}} + \frac{ln(x)}{(ln(x) + xln(x))^{2}} + \frac{ln(x + 1)}{(ln(x) + xln(x))} + \frac{x}{(x + 1)(ln(x) + xln(x))} + \frac{1}{(x + 1)(ln(x) + xln(x))} - \frac{ln(x)}{(ln(x) + xln(x))} - \frac{1}{(ln(x) + xln(x))}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!