本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(3600 + {(\frac{(6 - 3(cos(x)))*20}{sin(x)})}^{2})}^{\frac{1}{2}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = (\frac{3600cos^{2}(x)}{sin^{2}(x)} - \frac{14400cos(x)}{sin^{2}(x)} + \frac{14400}{sin^{2}(x)} + 3600)^{\frac{1}{2}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (\frac{3600cos^{2}(x)}{sin^{2}(x)} - \frac{14400cos(x)}{sin^{2}(x)} + \frac{14400}{sin^{2}(x)} + 3600)^{\frac{1}{2}}\right)}{dx}\\=&(\frac{\frac{1}{2}(\frac{3600*-2cos(x)cos^{2}(x)}{sin^{3}(x)} + \frac{3600*-2cos(x)sin(x)}{sin^{2}(x)} - \frac{14400*-2cos(x)cos(x)}{sin^{3}(x)} - \frac{14400*-sin(x)}{sin^{2}(x)} + \frac{14400*-2cos(x)}{sin^{3}(x)} + 0)}{(\frac{3600cos^{2}(x)}{sin^{2}(x)} - \frac{14400cos(x)}{sin^{2}(x)} + \frac{14400}{sin^{2}(x)} + 3600)^{\frac{1}{2}}})\\=&\frac{-3600cos^{3}(x)}{(\frac{3600cos^{2}(x)}{sin^{2}(x)} - \frac{14400cos(x)}{sin^{2}(x)} + \frac{14400}{sin^{2}(x)} + 3600)^{\frac{1}{2}}sin^{3}(x)} - \frac{3600cos(x)}{(\frac{3600cos^{2}(x)}{sin^{2}(x)} - \frac{14400cos(x)}{sin^{2}(x)} + \frac{14400}{sin^{2}(x)} + 3600)^{\frac{1}{2}}sin(x)} + \frac{14400cos^{2}(x)}{(\frac{3600cos^{2}(x)}{sin^{2}(x)} - \frac{14400cos(x)}{sin^{2}(x)} + \frac{14400}{sin^{2}(x)} + 3600)^{\frac{1}{2}}sin^{3}(x)} - \frac{14400cos(x)}{(\frac{3600cos^{2}(x)}{sin^{2}(x)} - \frac{14400cos(x)}{sin^{2}(x)} + \frac{14400}{sin^{2}(x)} + 3600)^{\frac{1}{2}}sin^{3}(x)} + \frac{7200}{(\frac{3600cos^{2}(x)}{sin^{2}(x)} - \frac{14400cos(x)}{sin^{2}(x)} + \frac{14400}{sin^{2}(x)} + 3600)^{\frac{1}{2}}sin(x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!