本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{60}{(sin(arctan(\frac{(3tan(x))}{({(45 + 36cos(x))}^{\frac{1}{2}})})))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{60}{sin(arctan(\frac{3tan(x)}{(36cos(x) + 45)^{\frac{1}{2}}}))}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{60}{sin(arctan(\frac{3tan(x)}{(36cos(x) + 45)^{\frac{1}{2}}}))}\right)}{dx}\\=&\frac{60*-cos(arctan(\frac{3tan(x)}{(36cos(x) + 45)^{\frac{1}{2}}}))(\frac{(3(\frac{\frac{-1}{2}(36*-sin(x) + 0)}{(36cos(x) + 45)^{\frac{3}{2}}})tan(x) + \frac{3sec^{2}(x)(1)}{(36cos(x) + 45)^{\frac{1}{2}}})}{(1 + (\frac{3tan(x)}{(36cos(x) + 45)^{\frac{1}{2}}})^{2})})}{sin^{2}(arctan(\frac{3tan(x)}{(36cos(x) + 45)^{\frac{1}{2}}}))}\\=&\frac{-3240sin(x)cos(arctan(\frac{3tan(x)}{(36cos(x) + 45)^{\frac{1}{2}}}))tan(x)}{(36cos(x) + 45)^{\frac{3}{2}}(\frac{9tan^{2}(x)}{(36cos(x) + 45)} + 1)sin^{2}(arctan(\frac{3tan(x)}{(36cos(x) + 45)^{\frac{1}{2}}}))} - \frac{180cos(arctan(\frac{3tan(x)}{(36cos(x) + 45)^{\frac{1}{2}}}))sec^{2}(x)}{(36cos(x) + 45)^{\frac{1}{2}}(\frac{9tan^{2}(x)}{(36cos(x) + 45)} + 1)sin^{2}(arctan(\frac{3tan(x)}{(36cos(x) + 45)^{\frac{1}{2}}}))}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!