本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sqrt(\frac{({x}^{2} + 2kx + 1)}{({x}^{2} - 2kx + 1)}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sqrt(\frac{x^{2}}{(x^{2} - 2kx + 1)} + \frac{2kx}{(x^{2} - 2kx + 1)} + \frac{1}{(x^{2} - 2kx + 1)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sqrt(\frac{x^{2}}{(x^{2} - 2kx + 1)} + \frac{2kx}{(x^{2} - 2kx + 1)} + \frac{1}{(x^{2} - 2kx + 1)})\right)}{dx}\\=&\frac{((\frac{-(2x - 2k + 0)}{(x^{2} - 2kx + 1)^{2}})x^{2} + \frac{2x}{(x^{2} - 2kx + 1)} + 2(\frac{-(2x - 2k + 0)}{(x^{2} - 2kx + 1)^{2}})kx + \frac{2k}{(x^{2} - 2kx + 1)} + (\frac{-(2x - 2k + 0)}{(x^{2} - 2kx + 1)^{2}}))*\frac{1}{2}}{(\frac{x^{2}}{(x^{2} - 2kx + 1)} + \frac{2kx}{(x^{2} - 2kx + 1)} + \frac{1}{(x^{2} - 2kx + 1)})^{\frac{1}{2}}}\\=&\frac{-x^{3}}{(x^{2} - 2kx + 1)^{2}(\frac{x^{2}}{(x^{2} - 2kx + 1)} + \frac{2kx}{(x^{2} - 2kx + 1)} + \frac{1}{(x^{2} - 2kx + 1)})^{\frac{1}{2}}} - \frac{kx^{2}}{(x^{2} - 2kx + 1)^{2}(\frac{x^{2}}{(x^{2} - 2kx + 1)} + \frac{2kx}{(x^{2} - 2kx + 1)} + \frac{1}{(x^{2} - 2kx + 1)})^{\frac{1}{2}}} + \frac{x}{(x^{2} - 2kx + 1)(\frac{x^{2}}{(x^{2} - 2kx + 1)} + \frac{2kx}{(x^{2} - 2kx + 1)} + \frac{1}{(x^{2} - 2kx + 1)})^{\frac{1}{2}}} + \frac{2k^{2}x}{(x^{2} - 2kx + 1)^{2}(\frac{x^{2}}{(x^{2} - 2kx + 1)} + \frac{2kx}{(x^{2} - 2kx + 1)} + \frac{1}{(x^{2} - 2kx + 1)})^{\frac{1}{2}}} + \frac{k}{(x^{2} - 2kx + 1)(\frac{x^{2}}{(x^{2} - 2kx + 1)} + \frac{2kx}{(x^{2} - 2kx + 1)} + \frac{1}{(x^{2} - 2kx + 1)})^{\frac{1}{2}}} - \frac{x}{(x^{2} - 2kx + 1)^{2}(\frac{x^{2}}{(x^{2} - 2kx + 1)} + \frac{2kx}{(x^{2} - 2kx + 1)} + \frac{1}{(x^{2} - 2kx + 1)})^{\frac{1}{2}}} + \frac{k}{(x^{2} - 2kx + 1)^{2}(\frac{x^{2}}{(x^{2} - 2kx + 1)} + \frac{2kx}{(x^{2} - 2kx + 1)} + \frac{1}{(x^{2} - 2kx + 1)})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!