本次共计算 1 个题目:每一题对 x 求 3 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{e}^{{x}^{2022}} 关于 x 的 3 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = {e}^{x^{2022}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {e}^{x^{2022}}\right)}{dx}\\=&({e}^{x^{2022}}((2022x^{2021})ln(e) + \frac{(x^{2022})(0)}{(e)}))\\=&2022x^{2021}{e}^{x^{2022}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 2022x^{2021}{e}^{x^{2022}}\right)}{dx}\\=&2022*2021x^{2020}{e}^{x^{2022}} + 2022x^{2021}({e}^{x^{2022}}((2022x^{2021})ln(e) + \frac{(x^{2022})(0)}{(e)}))\\=&4086462x^{2020}{e}^{x^{2022}} + 4088484x^{4042}{e}^{x^{2022}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 4086462x^{2020}{e}^{x^{2022}} + 4088484x^{4042}{e}^{x^{2022}}\right)}{dx}\\=&4086462*2020x^{2019}{e}^{x^{2022}} + 4086462x^{2020}({e}^{x^{2022}}((2022x^{2021})ln(e) + \frac{(x^{2022})(0)}{(e)})) + 4088484*4042x^{4041}{e}^{x^{2022}} + 4088484x^{4042}({e}^{x^{2022}}((2022x^{2021})ln(e) + \frac{(x^{2022})(0)}{(e)}))\\=&8254653240x^{2019}{e}^{x^{2022}} + 24788478492x^{4041}{e}^{x^{2022}} + 8266914648x^{6063}{e}^{x^{2022}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!