本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{x}^{3}(2x + 1) - \frac{{x}^{2}(2{x}^{2} - 1)(2x - 1)}{(2{x}^{2} - 1)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 2x^{4} + x^{3} - \frac{4x^{5}}{(2x^{2} - 1)} + \frac{2x^{4}}{(2x^{2} - 1)} + \frac{2x^{3}}{(2x^{2} - 1)} - \frac{x^{2}}{(2x^{2} - 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 2x^{4} + x^{3} - \frac{4x^{5}}{(2x^{2} - 1)} + \frac{2x^{4}}{(2x^{2} - 1)} + \frac{2x^{3}}{(2x^{2} - 1)} - \frac{x^{2}}{(2x^{2} - 1)}\right)}{dx}\\=&2*4x^{3} + 3x^{2} - 4(\frac{-(2*2x + 0)}{(2x^{2} - 1)^{2}})x^{5} - \frac{4*5x^{4}}{(2x^{2} - 1)} + 2(\frac{-(2*2x + 0)}{(2x^{2} - 1)^{2}})x^{4} + \frac{2*4x^{3}}{(2x^{2} - 1)} + 2(\frac{-(2*2x + 0)}{(2x^{2} - 1)^{2}})x^{3} + \frac{2*3x^{2}}{(2x^{2} - 1)} - (\frac{-(2*2x + 0)}{(2x^{2} - 1)^{2}})x^{2} - \frac{2x}{(2x^{2} - 1)}\\=&8x^{3} + 3x^{2} + \frac{16x^{6}}{(2x^{2} - 1)^{2}} - \frac{20x^{4}}{(2x^{2} - 1)} - \frac{8x^{5}}{(2x^{2} - 1)^{2}} + \frac{8x^{3}}{(2x^{2} - 1)} - \frac{8x^{4}}{(2x^{2} - 1)^{2}} + \frac{6x^{2}}{(2x^{2} - 1)} + \frac{4x^{3}}{(2x^{2} - 1)^{2}} - \frac{2x}{(2x^{2} - 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!