本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(tan(x))}{(tan(3x))} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{tan(x)}{tan(3x)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{tan(x)}{tan(3x)}\right)}{dx}\\=&\frac{sec^{2}(x)(1)}{tan(3x)} + \frac{tan(x)*-sec^{2}(3x)(3)}{tan^{2}(3x)}\\=&\frac{sec^{2}(x)}{tan(3x)} - \frac{3tan(x)sec^{2}(3x)}{tan^{2}(3x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{sec^{2}(x)}{tan(3x)} - \frac{3tan(x)sec^{2}(3x)}{tan^{2}(3x)}\right)}{dx}\\=&\frac{-sec^{2}(3x)(3)sec^{2}(x)}{tan^{2}(3x)} + \frac{2sec^{2}(x)tan(x)}{tan(3x)} - \frac{3*-2sec^{2}(3x)(3)tan(x)sec^{2}(3x)}{tan^{3}(3x)} - \frac{3sec^{2}(x)(1)sec^{2}(3x)}{tan^{2}(3x)} - \frac{3tan(x)*2sec^{2}(3x)tan(3x)*3}{tan^{2}(3x)}\\=&\frac{-3sec^{2}(3x)sec^{2}(x)}{tan^{2}(3x)} + \frac{18tan(x)sec^{4}(3x)}{tan^{3}(3x)} + \frac{2tan(x)sec^{2}(x)}{tan(3x)} - \frac{3sec^{2}(x)sec^{2}(3x)}{tan^{2}(3x)} - \frac{18tan(x)sec^{2}(3x)}{tan(3x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!