本次共计算 1 个题目:每一题对 T 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数V*2((102.732 - \frac{(\frac{T}{t})}{1000} - 0.44{\frac{1}{(\frac{T}{t})}}^{1.22})tanh(4.5sqrt(\frac{T}{t})) - 102.6) 关于 T 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 205.464Vtanh(4.5sqrt(\frac{T}{t})) - \frac{0.002VTtanh(4.5sqrt(\frac{T}{t}))}{t} - \frac{0.88Vt^{\frac{61}{50}}tanh(4.5sqrt(\frac{T}{t}))}{T^{\frac{61}{50}}} - 205.2V\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 205.464Vtanh(4.5sqrt(\frac{T}{t})) - \frac{0.002VTtanh(4.5sqrt(\frac{T}{t}))}{t} - \frac{0.88Vt^{\frac{61}{50}}tanh(4.5sqrt(\frac{T}{t}))}{T^{\frac{61}{50}}} - 205.2V\right)}{dT}\\=&\frac{205.464Vsech^{2}(4.5sqrt(\frac{T}{t}))*4.5*0.5}{t(\frac{T}{t})^{\frac{1}{2}}} - \frac{0.002Vtanh(4.5sqrt(\frac{T}{t}))}{t} - \frac{0.002VTsech^{2}(4.5sqrt(\frac{T}{t}))*4.5*0.5}{tt(\frac{T}{t})^{\frac{1}{2}}} - \frac{0.88Vt^{\frac{61}{50}}*-1.22tanh(4.5sqrt(\frac{T}{t}))}{T^{\frac{111}{50}}} - \frac{0.88Vt^{\frac{61}{50}}sech^{2}(4.5sqrt(\frac{T}{t}))*4.5*0.5}{T^{\frac{61}{50}}t(\frac{T}{t})^{\frac{1}{2}}} + 0\\=&\frac{462.294Vsech^{2}(4.5sqrt(\frac{T}{t}))}{t^{\frac{1}{2}}T^{\frac{1}{2}}} - \frac{0.002Vtanh(4.5sqrt(\frac{T}{t}))}{t} - \frac{0.0045VT^{\frac{1}{2}}sech^{2}(4.5sqrt(\frac{T}{t}))}{t^{\frac{3}{2}}} + \frac{1.0736Vt^{\frac{61}{50}}tanh(4.5sqrt(\frac{T}{t}))}{T^{\frac{111}{50}}} - \frac{1.98Vt^{\frac{18}{25}}sech^{2}(4.5sqrt(\frac{T}{t}))}{T^{\frac{43}{25}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!