本次共计算 1 个题目:每一题对 x 求 3 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(-36x + {e}^{(-x)}) 关于 x 的 3 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(-36x + {e}^{(-x)})\right)}{dx}\\=&\frac{(-36 + ({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)})))}{(-36x + {e}^{(-x)})}\\=&\frac{-{e}^{(-x)}}{(-36x + {e}^{(-x)})} - \frac{36}{(-36x + {e}^{(-x)})}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-{e}^{(-x)}}{(-36x + {e}^{(-x)})} - \frac{36}{(-36x + {e}^{(-x)})}\right)}{dx}\\=&-(\frac{-(-36 + ({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)})))}{(-36x + {e}^{(-x)})^{2}}){e}^{(-x)} - \frac{({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)}))}{(-36x + {e}^{(-x)})} - 36(\frac{-(-36 + ({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)})))}{(-36x + {e}^{(-x)})^{2}})\\=&\frac{-{e}^{(-2x)}}{(-36x + {e}^{(-x)})^{2}} - \frac{72{e}^{(-x)}}{(-36x + {e}^{(-x)})^{2}} + \frac{{e}^{(-x)}}{(-36x + {e}^{(-x)})} - \frac{1296}{(-36x + {e}^{(-x)})^{2}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-{e}^{(-2x)}}{(-36x + {e}^{(-x)})^{2}} - \frac{72{e}^{(-x)}}{(-36x + {e}^{(-x)})^{2}} + \frac{{e}^{(-x)}}{(-36x + {e}^{(-x)})} - \frac{1296}{(-36x + {e}^{(-x)})^{2}}\right)}{dx}\\=&-(\frac{-2(-36 + ({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)})))}{(-36x + {e}^{(-x)})^{3}}){e}^{(-2x)} - \frac{({e}^{(-2x)}((-2)ln(e) + \frac{(-2x)(0)}{(e)}))}{(-36x + {e}^{(-x)})^{2}} - 72(\frac{-2(-36 + ({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)})))}{(-36x + {e}^{(-x)})^{3}}){e}^{(-x)} - \frac{72({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)}))}{(-36x + {e}^{(-x)})^{2}} + (\frac{-(-36 + ({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)})))}{(-36x + {e}^{(-x)})^{2}}){e}^{(-x)} + \frac{({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)}))}{(-36x + {e}^{(-x)})} - 1296(\frac{-2(-36 + ({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)})))}{(-36x + {e}^{(-x)})^{3}})\\=&\frac{-2{e}^{(-3x)}}{(-36x + {e}^{(-x)})^{3}} - \frac{216{e}^{(-2x)}}{(-36x + {e}^{(-x)})^{3}} + \frac{3{e}^{(-2x)}}{(-36x + {e}^{(-x)})^{2}} - \frac{7776{e}^{(-x)}}{(-36x + {e}^{(-x)})^{3}} + \frac{108{e}^{(-x)}}{(-36x + {e}^{(-x)})^{2}} - \frac{{e}^{(-x)}}{(-36x + {e}^{(-x)})} - \frac{93312}{(-36x + {e}^{(-x)})^{3}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!