本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{10sin(\frac{2}{5}{x}^{2})}{({x}^{2} - x + 3)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{10sin(\frac{2}{5}x^{2})}{(x^{2} - x + 3)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{10sin(\frac{2}{5}x^{2})}{(x^{2} - x + 3)}\right)}{dx}\\=&10(\frac{-(2x - 1 + 0)}{(x^{2} - x + 3)^{2}})sin(\frac{2}{5}x^{2}) + \frac{10cos(\frac{2}{5}x^{2})*\frac{2}{5}*2x}{(x^{2} - x + 3)}\\=&\frac{-20xsin(\frac{2}{5}x^{2})}{(x^{2} - x + 3)^{2}} + \frac{10sin(\frac{2}{5}x^{2})}{(x^{2} - x + 3)^{2}} + \frac{8xcos(\frac{2}{5}x^{2})}{(x^{2} - x + 3)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!