本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(\frac{(x - 1)}{({e}^{(x - 1)})}) + ln(x) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = x{e}^{(-x + 1)} - {e}^{(-x + 1)} + ln(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( x{e}^{(-x + 1)} - {e}^{(-x + 1)} + ln(x)\right)}{dx}\\=&{e}^{(-x + 1)} + x({e}^{(-x + 1)}((-1 + 0)ln(e) + \frac{(-x + 1)(0)}{(e)})) - ({e}^{(-x + 1)}((-1 + 0)ln(e) + \frac{(-x + 1)(0)}{(e)})) + \frac{1}{(x)}\\=&2{e}^{(-x + 1)} - x{e}^{(-x + 1)} + \frac{1}{x}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!