数学
         
语言:中文    Language:English
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案

    本次共计算 1 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数4cos(2)x{e}^{x}tan(x){sin(x)}^{2} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 4x{e}^{x}sin^{2}(x)cos(2)tan(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 4x{e}^{x}sin^{2}(x)cos(2)tan(x)\right)}{dx}\\=&4{e}^{x}sin^{2}(x)cos(2)tan(x) + 4x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin^{2}(x)cos(2)tan(x) + 4x{e}^{x}*2sin(x)cos(x)cos(2)tan(x) + 4x{e}^{x}sin^{2}(x)*-sin(2)*0tan(x) + 4x{e}^{x}sin^{2}(x)cos(2)sec^{2}(x)(1)\\=&4{e}^{x}sin^{2}(x)cos(2)tan(x) + 4x{e}^{x}sin^{2}(x)cos(2)tan(x) + 8x{e}^{x}sin(x)cos(x)cos(2)tan(x) + 4x{e}^{x}sin^{2}(x)cos(2)sec^{2}(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 4{e}^{x}sin^{2}(x)cos(2)tan(x) + 4x{e}^{x}sin^{2}(x)cos(2)tan(x) + 8x{e}^{x}sin(x)cos(x)cos(2)tan(x) + 4x{e}^{x}sin^{2}(x)cos(2)sec^{2}(x)\right)}{dx}\\=&4({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin^{2}(x)cos(2)tan(x) + 4{e}^{x}*2sin(x)cos(x)cos(2)tan(x) + 4{e}^{x}sin^{2}(x)*-sin(2)*0tan(x) + 4{e}^{x}sin^{2}(x)cos(2)sec^{2}(x)(1) + 4{e}^{x}sin^{2}(x)cos(2)tan(x) + 4x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin^{2}(x)cos(2)tan(x) + 4x{e}^{x}*2sin(x)cos(x)cos(2)tan(x) + 4x{e}^{x}sin^{2}(x)*-sin(2)*0tan(x) + 4x{e}^{x}sin^{2}(x)cos(2)sec^{2}(x)(1) + 8{e}^{x}sin(x)cos(x)cos(2)tan(x) + 8x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(x)cos(x)cos(2)tan(x) + 8x{e}^{x}cos(x)cos(x)cos(2)tan(x) + 8x{e}^{x}sin(x)*-sin(x)cos(2)tan(x) + 8x{e}^{x}sin(x)cos(x)*-sin(2)*0tan(x) + 8x{e}^{x}sin(x)cos(x)cos(2)sec^{2}(x)(1) + 4{e}^{x}sin^{2}(x)cos(2)sec^{2}(x) + 4x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin^{2}(x)cos(2)sec^{2}(x) + 4x{e}^{x}*2sin(x)cos(x)cos(2)sec^{2}(x) + 4x{e}^{x}sin^{2}(x)*-sin(2)*0sec^{2}(x) + 4x{e}^{x}sin^{2}(x)cos(2)*2sec^{2}(x)tan(x)\\=&8{e}^{x}sin^{2}(x)cos(2)tan(x) + 16{e}^{x}sin(x)cos(x)cos(2)tan(x) + 8{e}^{x}sin^{2}(x)cos(2)sec^{2}(x) + 8x{e}^{x}sin^{2}(x)cos(2)tan(x)sec^{2}(x) + 16x{e}^{x}sin(x)cos(x)cos(2)tan(x) + 8x{e}^{x}sin^{2}(x)cos(2)sec^{2}(x) + 8x{e}^{x}cos^{2}(x)cos(2)tan(x) - 4x{e}^{x}sin^{2}(x)cos(2)tan(x) + 8x{e}^{x}sin(x)cos(2)cos(x)sec^{2}(x) + 8x{e}^{x}sin(x)cos(x)cos(2)sec^{2}(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 8{e}^{x}sin^{2}(x)cos(2)tan(x) + 16{e}^{x}sin(x)cos(x)cos(2)tan(x) + 8{e}^{x}sin^{2}(x)cos(2)sec^{2}(x) + 8x{e}^{x}sin^{2}(x)cos(2)tan(x)sec^{2}(x) + 16x{e}^{x}sin(x)cos(x)cos(2)tan(x) + 8x{e}^{x}sin^{2}(x)cos(2)sec^{2}(x) + 8x{e}^{x}cos^{2}(x)cos(2)tan(x) - 4x{e}^{x}sin^{2}(x)cos(2)tan(x) + 8x{e}^{x}sin(x)cos(2)cos(x)sec^{2}(x) + 8x{e}^{x}sin(x)cos(x)cos(2)sec^{2}(x)\right)}{dx}\\=&8({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin^{2}(x)cos(2)tan(x) + 8{e}^{x}*2sin(x)cos(x)cos(2)tan(x) + 8{e}^{x}sin^{2}(x)*-sin(2)*0tan(x) + 8{e}^{x}sin^{2}(x)cos(2)sec^{2}(x)(1) + 16({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(x)cos(x)cos(2)tan(x) + 16{e}^{x}cos(x)cos(x)cos(2)tan(x) + 16{e}^{x}sin(x)*-sin(x)cos(2)tan(x) + 16{e}^{x}sin(x)cos(x)*-sin(2)*0tan(x) + 16{e}^{x}sin(x)cos(x)cos(2)sec^{2}(x)(1) + 8({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin^{2}(x)cos(2)sec^{2}(x) + 8{e}^{x}*2sin(x)cos(x)cos(2)sec^{2}(x) + 8{e}^{x}sin^{2}(x)*-sin(2)*0sec^{2}(x) + 8{e}^{x}sin^{2}(x)cos(2)*2sec^{2}(x)tan(x) + 8{e}^{x}sin^{2}(x)cos(2)tan(x)sec^{2}(x) + 8x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin^{2}(x)cos(2)tan(x)sec^{2}(x) + 8x{e}^{x}*2sin(x)cos(x)cos(2)tan(x)sec^{2}(x) + 8x{e}^{x}sin^{2}(x)*-sin(2)*0tan(x)sec^{2}(x) + 8x{e}^{x}sin^{2}(x)cos(2)sec^{2}(x)(1)sec^{2}(x) + 8x{e}^{x}sin^{2}(x)cos(2)tan(x)*2sec^{2}(x)tan(x) + 16{e}^{x}sin(x)cos(x)cos(2)tan(x) + 16x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(x)cos(x)cos(2)tan(x) + 16x{e}^{x}cos(x)cos(x)cos(2)tan(x) + 16x{e}^{x}sin(x)*-sin(x)cos(2)tan(x) + 16x{e}^{x}sin(x)cos(x)*-sin(2)*0tan(x) + 16x{e}^{x}sin(x)cos(x)cos(2)sec^{2}(x)(1) + 8{e}^{x}sin^{2}(x)cos(2)sec^{2}(x) + 8x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin^{2}(x)cos(2)sec^{2}(x) + 8x{e}^{x}*2sin(x)cos(x)cos(2)sec^{2}(x) + 8x{e}^{x}sin^{2}(x)*-sin(2)*0sec^{2}(x) + 8x{e}^{x}sin^{2}(x)cos(2)*2sec^{2}(x)tan(x) + 8{e}^{x}cos^{2}(x)cos(2)tan(x) + 8x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))cos^{2}(x)cos(2)tan(x) + 8x{e}^{x}*-2cos(x)sin(x)cos(2)tan(x) + 8x{e}^{x}cos^{2}(x)*-sin(2)*0tan(x) + 8x{e}^{x}cos^{2}(x)cos(2)sec^{2}(x)(1) - 4{e}^{x}sin^{2}(x)cos(2)tan(x) - 4x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin^{2}(x)cos(2)tan(x) - 4x{e}^{x}*2sin(x)cos(x)cos(2)tan(x) - 4x{e}^{x}sin^{2}(x)*-sin(2)*0tan(x) - 4x{e}^{x}sin^{2}(x)cos(2)sec^{2}(x)(1) + 8{e}^{x}sin(x)cos(2)cos(x)sec^{2}(x) + 8x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(x)cos(2)cos(x)sec^{2}(x) + 8x{e}^{x}cos(x)cos(2)cos(x)sec^{2}(x) + 8x{e}^{x}sin(x)*-sin(2)*0cos(x)sec^{2}(x) + 8x{e}^{x}sin(x)cos(2)*-sin(x)sec^{2}(x) + 8x{e}^{x}sin(x)cos(2)cos(x)*2sec^{2}(x)tan(x) + 8{e}^{x}sin(x)cos(x)cos(2)sec^{2}(x) + 8x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(x)cos(x)cos(2)sec^{2}(x) + 8x{e}^{x}cos(x)cos(x)cos(2)sec^{2}(x) + 8x{e}^{x}sin(x)*-sin(x)cos(2)sec^{2}(x) + 8x{e}^{x}sin(x)cos(x)*-sin(2)*0sec^{2}(x) + 8x{e}^{x}sin(x)cos(x)cos(2)*2sec^{2}(x)tan(x)\\=&24{e}^{x}sin^{2}(x)cos(2)tan(x)sec^{2}(x) + 48{e}^{x}sin(x)cos(x)cos(2)tan(x) + 24{e}^{x}sin^{2}(x)cos(2)sec^{2}(x) + 24{e}^{x}cos^{2}(x)cos(2)tan(x) - 12{e}^{x}sin^{2}(x)cos(2)tan(x) + 24{e}^{x}sin(x)cos(2)cos(x)sec^{2}(x) + 24{e}^{x}sin(x)cos(x)cos(2)sec^{2}(x) + 24x{e}^{x}sin^{2}(x)cos(2)tan(x)sec^{2}(x) + 32x{e}^{x}sin(x)cos(x)cos(2)tan(x)sec^{2}(x) + 8x{e}^{x}sin^{2}(x)cos(2)sec^{4}(x) + 16x{e}^{x}sin^{2}(x)cos(2)tan^{2}(x)sec^{2}(x) + 16x{e}^{x}sin(x)cos(2)cos(x)tan(x)sec^{2}(x) + 24x{e}^{x}cos^{2}(x)cos(2)tan(x) + 24x{e}^{x}sin(x)cos(2)cos(x)sec^{2}(x) - 12x{e}^{x}sin^{2}(x)cos(2)sec^{2}(x) + 24x{e}^{x}sin(x)cos(x)cos(2)sec^{2}(x) - 20x{e}^{x}sin^{2}(x)cos(2)tan(x) - 8x{e}^{x}sin(x)cos(x)cos(2)tan(x) + 8x{e}^{x}cos(2)cos^{2}(x)sec^{2}(x) + 16x{e}^{x}cos^{2}(x)cos(2)sec^{2}(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 24{e}^{x}sin^{2}(x)cos(2)tan(x)sec^{2}(x) + 48{e}^{x}sin(x)cos(x)cos(2)tan(x) + 24{e}^{x}sin^{2}(x)cos(2)sec^{2}(x) + 24{e}^{x}cos^{2}(x)cos(2)tan(x) - 12{e}^{x}sin^{2}(x)cos(2)tan(x) + 24{e}^{x}sin(x)cos(2)cos(x)sec^{2}(x) + 24{e}^{x}sin(x)cos(x)cos(2)sec^{2}(x) + 24x{e}^{x}sin^{2}(x)cos(2)tan(x)sec^{2}(x) + 32x{e}^{x}sin(x)cos(x)cos(2)tan(x)sec^{2}(x) + 8x{e}^{x}sin^{2}(x)cos(2)sec^{4}(x) + 16x{e}^{x}sin^{2}(x)cos(2)tan^{2}(x)sec^{2}(x) + 16x{e}^{x}sin(x)cos(2)cos(x)tan(x)sec^{2}(x) + 24x{e}^{x}cos^{2}(x)cos(2)tan(x) + 24x{e}^{x}sin(x)cos(2)cos(x)sec^{2}(x) - 12x{e}^{x}sin^{2}(x)cos(2)sec^{2}(x) + 24x{e}^{x}sin(x)cos(x)cos(2)sec^{2}(x) - 20x{e}^{x}sin^{2}(x)cos(2)tan(x) - 8x{e}^{x}sin(x)cos(x)cos(2)tan(x) + 8x{e}^{x}cos(2)cos^{2}(x)sec^{2}(x) + 16x{e}^{x}cos^{2}(x)cos(2)sec^{2}(x)\right)}{dx}\\=&24({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin^{2}(x)cos(2)tan(x)sec^{2}(x) + 24{e}^{x}*2sin(x)cos(x)cos(2)tan(x)sec^{2}(x) + 24{e}^{x}sin^{2}(x)*-sin(2)*0tan(x)sec^{2}(x) + 24{e}^{x}sin^{2}(x)cos(2)sec^{2}(x)(1)sec^{2}(x) + 24{e}^{x}sin^{2}(x)cos(2)tan(x)*2sec^{2}(x)tan(x) + 48({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(x)cos(x)cos(2)tan(x) + 48{e}^{x}cos(x)cos(x)cos(2)tan(x) + 48{e}^{x}sin(x)*-sin(x)cos(2)tan(x) + 48{e}^{x}sin(x)cos(x)*-sin(2)*0tan(x) + 48{e}^{x}sin(x)cos(x)cos(2)sec^{2}(x)(1) + 24({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin^{2}(x)cos(2)sec^{2}(x) + 24{e}^{x}*2sin(x)cos(x)cos(2)sec^{2}(x) + 24{e}^{x}sin^{2}(x)*-sin(2)*0sec^{2}(x) + 24{e}^{x}sin^{2}(x)cos(2)*2sec^{2}(x)tan(x) + 24({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))cos^{2}(x)cos(2)tan(x) + 24{e}^{x}*-2cos(x)sin(x)cos(2)tan(x) + 24{e}^{x}cos^{2}(x)*-sin(2)*0tan(x) + 24{e}^{x}cos^{2}(x)cos(2)sec^{2}(x)(1) - 12({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin^{2}(x)cos(2)tan(x) - 12{e}^{x}*2sin(x)cos(x)cos(2)tan(x) - 12{e}^{x}sin^{2}(x)*-sin(2)*0tan(x) - 12{e}^{x}sin^{2}(x)cos(2)sec^{2}(x)(1) + 24({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(x)cos(2)cos(x)sec^{2}(x) + 24{e}^{x}cos(x)cos(2)cos(x)sec^{2}(x) + 24{e}^{x}sin(x)*-sin(2)*0cos(x)sec^{2}(x) + 24{e}^{x}sin(x)cos(2)*-sin(x)sec^{2}(x) + 24{e}^{x}sin(x)cos(2)cos(x)*2sec^{2}(x)tan(x) + 24({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(x)cos(x)cos(2)sec^{2}(x) + 24{e}^{x}cos(x)cos(x)cos(2)sec^{2}(x) + 24{e}^{x}sin(x)*-sin(x)cos(2)sec^{2}(x) + 24{e}^{x}sin(x)cos(x)*-sin(2)*0sec^{2}(x) + 24{e}^{x}sin(x)cos(x)cos(2)*2sec^{2}(x)tan(x) + 24{e}^{x}sin^{2}(x)cos(2)tan(x)sec^{2}(x) + 24x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin^{2}(x)cos(2)tan(x)sec^{2}(x) + 24x{e}^{x}*2sin(x)cos(x)cos(2)tan(x)sec^{2}(x) + 24x{e}^{x}sin^{2}(x)*-sin(2)*0tan(x)sec^{2}(x) + 24x{e}^{x}sin^{2}(x)cos(2)sec^{2}(x)(1)sec^{2}(x) + 24x{e}^{x}sin^{2}(x)cos(2)tan(x)*2sec^{2}(x)tan(x) + 32{e}^{x}sin(x)cos(x)cos(2)tan(x)sec^{2}(x) + 32x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(x)cos(x)cos(2)tan(x)sec^{2}(x) + 32x{e}^{x}cos(x)cos(x)cos(2)tan(x)sec^{2}(x) + 32x{e}^{x}sin(x)*-sin(x)cos(2)tan(x)sec^{2}(x) + 32x{e}^{x}sin(x)cos(x)*-sin(2)*0tan(x)sec^{2}(x) + 32x{e}^{x}sin(x)cos(x)cos(2)sec^{2}(x)(1)sec^{2}(x) + 32x{e}^{x}sin(x)cos(x)cos(2)tan(x)*2sec^{2}(x)tan(x) + 8{e}^{x}sin^{2}(x)cos(2)sec^{4}(x) + 8x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin^{2}(x)cos(2)sec^{4}(x) + 8x{e}^{x}*2sin(x)cos(x)cos(2)sec^{4}(x) + 8x{e}^{x}sin^{2}(x)*-sin(2)*0sec^{4}(x) + 8x{e}^{x}sin^{2}(x)cos(2)*4sec^{4}(x)tan(x) + 16{e}^{x}sin^{2}(x)cos(2)tan^{2}(x)sec^{2}(x) + 16x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin^{2}(x)cos(2)tan^{2}(x)sec^{2}(x) + 16x{e}^{x}*2sin(x)cos(x)cos(2)tan^{2}(x)sec^{2}(x) + 16x{e}^{x}sin^{2}(x)*-sin(2)*0tan^{2}(x)sec^{2}(x) + 16x{e}^{x}sin^{2}(x)cos(2)*2tan(x)sec^{2}(x)(1)sec^{2}(x) + 16x{e}^{x}sin^{2}(x)cos(2)tan^{2}(x)*2sec^{2}(x)tan(x) + 16{e}^{x}sin(x)cos(2)cos(x)tan(x)sec^{2}(x) + 16x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(x)cos(2)cos(x)tan(x)sec^{2}(x) + 16x{e}^{x}cos(x)cos(2)cos(x)tan(x)sec^{2}(x) + 16x{e}^{x}sin(x)*-sin(2)*0cos(x)tan(x)sec^{2}(x) + 16x{e}^{x}sin(x)cos(2)*-sin(x)tan(x)sec^{2}(x) + 16x{e}^{x}sin(x)cos(2)cos(x)sec^{2}(x)(1)sec^{2}(x) + 16x{e}^{x}sin(x)cos(2)cos(x)tan(x)*2sec^{2}(x)tan(x) + 24{e}^{x}cos^{2}(x)cos(2)tan(x) + 24x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))cos^{2}(x)cos(2)tan(x) + 24x{e}^{x}*-2cos(x)sin(x)cos(2)tan(x) + 24x{e}^{x}cos^{2}(x)*-sin(2)*0tan(x) + 24x{e}^{x}cos^{2}(x)cos(2)sec^{2}(x)(1) + 24{e}^{x}sin(x)cos(2)cos(x)sec^{2}(x) + 24x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(x)cos(2)cos(x)sec^{2}(x) + 24x{e}^{x}cos(x)cos(2)cos(x)sec^{2}(x) + 24x{e}^{x}sin(x)*-sin(2)*0cos(x)sec^{2}(x) + 24x{e}^{x}sin(x)cos(2)*-sin(x)sec^{2}(x) + 24x{e}^{x}sin(x)cos(2)cos(x)*2sec^{2}(x)tan(x) - 12{e}^{x}sin^{2}(x)cos(2)sec^{2}(x) - 12x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin^{2}(x)cos(2)sec^{2}(x) - 12x{e}^{x}*2sin(x)cos(x)cos(2)sec^{2}(x) - 12x{e}^{x}sin^{2}(x)*-sin(2)*0sec^{2}(x) - 12x{e}^{x}sin^{2}(x)cos(2)*2sec^{2}(x)tan(x) + 24{e}^{x}sin(x)cos(x)cos(2)sec^{2}(x) + 24x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(x)cos(x)cos(2)sec^{2}(x) + 24x{e}^{x}cos(x)cos(x)cos(2)sec^{2}(x) + 24x{e}^{x}sin(x)*-sin(x)cos(2)sec^{2}(x) + 24x{e}^{x}sin(x)cos(x)*-sin(2)*0sec^{2}(x) + 24x{e}^{x}sin(x)cos(x)cos(2)*2sec^{2}(x)tan(x) - 20{e}^{x}sin^{2}(x)cos(2)tan(x) - 20x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin^{2}(x)cos(2)tan(x) - 20x{e}^{x}*2sin(x)cos(x)cos(2)tan(x) - 20x{e}^{x}sin^{2}(x)*-sin(2)*0tan(x) - 20x{e}^{x}sin^{2}(x)cos(2)sec^{2}(x)(1) - 8{e}^{x}sin(x)cos(x)cos(2)tan(x) - 8x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(x)cos(x)cos(2)tan(x) - 8x{e}^{x}cos(x)cos(x)cos(2)tan(x) - 8x{e}^{x}sin(x)*-sin(x)cos(2)tan(x) - 8x{e}^{x}sin(x)cos(x)*-sin(2)*0tan(x) - 8x{e}^{x}sin(x)cos(x)cos(2)sec^{2}(x)(1) + 8{e}^{x}cos(2)cos^{2}(x)sec^{2}(x) + 8x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))cos(2)cos^{2}(x)sec^{2}(x) + 8x{e}^{x}*-sin(2)*0cos^{2}(x)sec^{2}(x) + 8x{e}^{x}cos(2)*-2cos(x)sin(x)sec^{2}(x) + 8x{e}^{x}cos(2)cos^{2}(x)*2sec^{2}(x)tan(x) + 16{e}^{x}cos^{2}(x)cos(2)sec^{2}(x) + 16x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))cos^{2}(x)cos(2)sec^{2}(x) + 16x{e}^{x}*-2cos(x)sin(x)cos(2)sec^{2}(x) + 16x{e}^{x}cos^{2}(x)*-sin(2)*0sec^{2}(x) + 16x{e}^{x}cos^{2}(x)cos(2)*2sec^{2}(x)tan(x)\\=&96{e}^{x}sin^{2}(x)cos(2)tan(x)sec^{2}(x) + 128{e}^{x}sin(x)cos(x)cos(2)tan(x)sec^{2}(x) + 32{e}^{x}sin^{2}(x)cos(2)sec^{4}(x) + 64{e}^{x}sin^{2}(x)cos(2)tan^{2}(x)sec^{2}(x) + 64{e}^{x}sin(x)cos(2)cos(x)tan(x)sec^{2}(x) + 96{e}^{x}cos^{2}(x)cos(2)tan(x) + 96{e}^{x}sin(x)cos(2)cos(x)sec^{2}(x) - 48{e}^{x}sin^{2}(x)cos(2)sec^{2}(x) + 96{e}^{x}sin(x)cos(x)cos(2)sec^{2}(x) - 80{e}^{x}sin^{2}(x)cos(2)tan(x) - 32{e}^{x}sin(x)cos(x)cos(2)tan(x) + 32{e}^{x}cos(2)cos^{2}(x)sec^{2}(x) + 64{e}^{x}cos^{2}(x)cos(2)sec^{2}(x) - 48x{e}^{x}sin^{2}(x)cos(2)tan(x)sec^{2}(x) + 128x{e}^{x}sin(x)cos(x)cos(2)tan(x)sec^{2}(x) + 32x{e}^{x}sin^{2}(x)cos(2)sec^{4}(x) + 64x{e}^{x}sin^{2}(x)cos(2)tan^{2}(x)sec^{2}(x) + 80x{e}^{x}cos^{2}(x)cos(2)tan(x)sec^{2}(x) + 32x{e}^{x}sin(x)cos(2)cos(x)sec^{4}(x) + 96x{e}^{x}sin(x)cos(x)cos(2)tan^{2}(x)sec^{2}(x) + 32x{e}^{x}sin(x)cos(x)cos(2)sec^{4}(x) + 64x{e}^{x}sin^{2}(x)cos(2)tan(x)sec^{4}(x) + 32x{e}^{x}sin^{2}(x)cos(2)tan^{3}(x)sec^{2}(x) + 64x{e}^{x}sin(x)cos(2)cos(x)tan(x)sec^{2}(x) + 32x{e}^{x}sin(x)cos(2)cos(x)tan^{2}(x)sec^{2}(x) + 16x{e}^{x}cos(2)cos^{2}(x)tan(x)sec^{2}(x) + 32x{e}^{x}cos(2)cos^{2}(x)sec^{2}(x) + 64x{e}^{x}cos^{2}(x)cos(2)sec^{2}(x) - 80x{e}^{x}sin^{2}(x)cos(2)sec^{2}(x) - 32x{e}^{x}sin(x)cos(x)cos(2)sec^{2}(x) - 96x{e}^{x}sin(x)cos(x)cos(2)tan(x) - 12x{e}^{x}sin^{2}(x)cos(2)tan(x) + 16x{e}^{x}cos^{2}(x)cos(2)tan(x)\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。