本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sin(5x){(tan({x}^{2}) - x)}^{3} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sin(5x)tan^{3}(x^{2}) - 3xsin(5x)tan^{2}(x^{2}) + 3x^{2}sin(5x)tan(x^{2}) - x^{3}sin(5x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sin(5x)tan^{3}(x^{2}) - 3xsin(5x)tan^{2}(x^{2}) + 3x^{2}sin(5x)tan(x^{2}) - x^{3}sin(5x)\right)}{dx}\\=&cos(5x)*5tan^{3}(x^{2}) + sin(5x)*3tan^{2}(x^{2})sec^{2}(x^{2})(2x) - 3sin(5x)tan^{2}(x^{2}) - 3xcos(5x)*5tan^{2}(x^{2}) - 3xsin(5x)*2tan(x^{2})sec^{2}(x^{2})(2x) + 3*2xsin(5x)tan(x^{2}) + 3x^{2}cos(5x)*5tan(x^{2}) + 3x^{2}sin(5x)sec^{2}(x^{2})(2x) - 3x^{2}sin(5x) - x^{3}cos(5x)*5\\=&5cos(5x)tan^{3}(x^{2}) + 6xsin(5x)tan^{2}(x^{2})sec^{2}(x^{2}) - 3sin(5x)tan^{2}(x^{2}) - 15xcos(5x)tan^{2}(x^{2}) - 12x^{2}sin(5x)tan(x^{2})sec^{2}(x^{2}) + 6xsin(5x)tan(x^{2}) + 15x^{2}cos(5x)tan(x^{2}) + 6x^{3}sin(5x)sec^{2}(x^{2}) - 3x^{2}sin(5x) - 5x^{3}cos(5x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!