本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sqrt(\frac{((1 + 2x)(3 + 4x))}{((5 + 6x)(7 + 8x))}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sqrt(\frac{8x^{2}}{(48x^{2} + 82x + 35)} + \frac{10x}{(48x^{2} + 82x + 35)} + \frac{3}{(48x^{2} + 82x + 35)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sqrt(\frac{8x^{2}}{(48x^{2} + 82x + 35)} + \frac{10x}{(48x^{2} + 82x + 35)} + \frac{3}{(48x^{2} + 82x + 35)})\right)}{dx}\\=&\frac{(8(\frac{-(48*2x + 82 + 0)}{(48x^{2} + 82x + 35)^{2}})x^{2} + \frac{8*2x}{(48x^{2} + 82x + 35)} + 10(\frac{-(48*2x + 82 + 0)}{(48x^{2} + 82x + 35)^{2}})x + \frac{10}{(48x^{2} + 82x + 35)} + 3(\frac{-(48*2x + 82 + 0)}{(48x^{2} + 82x + 35)^{2}}))*\frac{1}{2}}{(\frac{8x^{2}}{(48x^{2} + 82x + 35)} + \frac{10x}{(48x^{2} + 82x + 35)} + \frac{3}{(48x^{2} + 82x + 35)})^{\frac{1}{2}}}\\=&\frac{-384x^{3}}{(48x^{2} + 82x + 35)^{2}(\frac{8x^{2}}{(48x^{2} + 82x + 35)} + \frac{10x}{(48x^{2} + 82x + 35)} + \frac{3}{(48x^{2} + 82x + 35)})^{\frac{1}{2}}} - \frac{808x^{2}}{(48x^{2} + 82x + 35)^{2}(\frac{8x^{2}}{(48x^{2} + 82x + 35)} + \frac{10x}{(48x^{2} + 82x + 35)} + \frac{3}{(48x^{2} + 82x + 35)})^{\frac{1}{2}}} + \frac{8x}{(48x^{2} + 82x + 35)(\frac{8x^{2}}{(48x^{2} + 82x + 35)} + \frac{10x}{(48x^{2} + 82x + 35)} + \frac{3}{(48x^{2} + 82x + 35)})^{\frac{1}{2}}} - \frac{554x}{(48x^{2} + 82x + 35)^{2}(\frac{8x^{2}}{(48x^{2} + 82x + 35)} + \frac{10x}{(48x^{2} + 82x + 35)} + \frac{3}{(48x^{2} + 82x + 35)})^{\frac{1}{2}}} + \frac{5}{(48x^{2} + 82x + 35)(\frac{8x^{2}}{(48x^{2} + 82x + 35)} + \frac{10x}{(48x^{2} + 82x + 35)} + \frac{3}{(48x^{2} + 82x + 35)})^{\frac{1}{2}}} - \frac{123}{(48x^{2} + 82x + 35)^{2}(\frac{8x^{2}}{(48x^{2} + 82x + 35)} + \frac{10x}{(48x^{2} + 82x + 35)} + \frac{3}{(48x^{2} + 82x + 35)})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!