本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sin(5)x({(tan({x}^{2}) - x)}^{3}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = xsin(5)tan^{3}(x^{2}) - 3x^{2}sin(5)tan^{2}(x^{2}) + 3x^{3}sin(5)tan(x^{2}) - x^{4}sin(5)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( xsin(5)tan^{3}(x^{2}) - 3x^{2}sin(5)tan^{2}(x^{2}) + 3x^{3}sin(5)tan(x^{2}) - x^{4}sin(5)\right)}{dx}\\=&sin(5)tan^{3}(x^{2}) + xcos(5)*0tan^{3}(x^{2}) + xsin(5)*3tan^{2}(x^{2})sec^{2}(x^{2})(2x) - 3*2xsin(5)tan^{2}(x^{2}) - 3x^{2}cos(5)*0tan^{2}(x^{2}) - 3x^{2}sin(5)*2tan(x^{2})sec^{2}(x^{2})(2x) + 3*3x^{2}sin(5)tan(x^{2}) + 3x^{3}cos(5)*0tan(x^{2}) + 3x^{3}sin(5)sec^{2}(x^{2})(2x) - 4x^{3}sin(5) - x^{4}cos(5)*0\\=&sin(5)tan^{3}(x^{2}) + 6x^{2}sin(5)tan^{2}(x^{2})sec^{2}(x^{2}) - 12x^{3}sin(5)tan(x^{2})sec^{2}(x^{2}) - 6xsin(5)tan^{2}(x^{2}) + 9x^{2}sin(5)tan(x^{2}) + 6x^{4}sin(5)sec^{2}(x^{2}) - 4x^{3}sin(5)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!